A068236
First differences of (n+1)^5-n^5.
Original entry on oeis.org
30, 180, 570, 1320, 2550, 4380, 6930, 10320, 14670, 20100, 26730, 34680, 44070, 55020, 67650, 82080, 98430, 116820, 137370, 160200, 185430, 213180, 243570, 276720, 312750, 351780, 393930, 439320, 488070, 540300, 596130, 655680, 719070, 786420, 857850, 933480
Offset: 0
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 25 2002
- Colin Barker, Table of n, a(n) for n = 0..1000
- O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
Table[20*n^3 + 10*n, {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
Differences[#[[2]]-#[[1]]&/@Partition[Range[0,40]^5,2,1]] (* or *) LinearRecurrence[{4,-6,4,-1},{30,180,570,1320},40] (* Harvey P. Dale, Jun 05 2019 *)
-
Vec(30*(x+1)^2 / (x-1)^4 + O(x^100)) \\ Colin Barker, Dec 13 2014
A113850
Numbers whose prime factors are raised to the fifth power.
Original entry on oeis.org
32, 243, 3125, 7776, 16807, 100000, 161051, 371293, 537824, 759375, 1419857, 2476099, 4084101, 5153632, 6436343, 11881376, 20511149, 24300000, 28629151, 39135393, 45435424, 52521875, 69343957, 79235168, 90224199, 115856201
Offset: 1
7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
Nonunit terms of
A329332 column 5 in ascending order.
-
Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* Robert G. Wilson v *)
Rest[Select[Range[100], SquareFreeQ]^5] (* Vaclav Kotesovec, May 22 2020 *)
-
allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
-
from math import isqrt
from sympy import mobius
def A113850(n):
def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m**5 # Chai Wah Wu, Sep 13 2024
A300656
Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 31, 1;
n=3: 1, 121, 121, 1;
n=4: 1, 271, 481, 271, 1;
n=5: 1, 481, 1081, 1081, 481, 1;
n=6: 1, 751, 1921, 2431, 1921, 751, 1;
n=7: 1, 1081, 3001, 4321, 4321, 3001, 1081, 1;
n=8: 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1;
n=9: 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431, 1;
Various cases of L(m, n, k):
A287326(m=1), This sequence (m=2),
A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of
A002561.
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A302971,
A304042,
A002561,
A258807,
A158558,
A094053,
A024003,
A316349.
-
T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
-
[[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
-
a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
-
T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
-
t(n, k) = 30*k^2*(n-k)^2+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A300785
Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 127, 1;
n=3: 1, 1093, 1093, 1;
n=4: 1, 3739, 8905, 3739, 1;
n=5: 1, 8905, 30157, 30157, 8905, 1;
n=6: 1, 17431, 71569, 101935, 71569, 17431, 1;
n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1;
Various cases of L(m, n, k):
A287326 (m=1),
A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A300656,
A302971,
A304042,
A001015,
A094053,
A258808,
A024005,
A316387.
-
T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
-
/* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
-
T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
-
T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
-
t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
Original entry on oeis.org
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1
Cecilia Rossiter, Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (1).
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
Cf.
A101095 for an expanded table and more about MagicNKZ.
-
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)
Original Formula edited and Crossrefs table added by
Danny Rorabaugh, Apr 22 2015
A284926
a(n) = Sum_{d|n} (-1)^(n/d+1)*d^5.
Original entry on oeis.org
1, 31, 244, 991, 3126, 7564, 16808, 31711, 59293, 96906, 161052, 241804, 371294, 521048, 762744, 1014751, 1419858, 1838083, 2476100, 3097866, 4101152, 4992612, 6436344, 7737484, 9768751, 11510114, 14408200, 16656728, 20511150, 23645064, 28629152, 32472031, 39296688
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Sum_{d|n} (-1)^(n/d+1)*d^k:
A000593 (k=1),
A078306 (k=2),
A078307 (k=3),
A284900 (k=4), this sequence (k=5),
A284927 (k=6),
A321552 (k=7),
A321553 (k=8),
A321554 (k=9),
A321555 (k=10),
A321556 (k=11),
A321557 (k=12).
-
Table[Sum[(-1)^(n/d + 1)*d^5, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := (15*2^(5*e + 1) + 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
-
a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^5); \\ Indranil Ghosh, Apr 06 2017
-
from sympy import divisors
print([sum((-1)**(n//d + 1)*d**5 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017
A010803
15th powers: a(n) = n^15.
Original entry on oeis.org
0, 1, 32768, 14348907, 1073741824, 30517578125, 470184984576, 4747561509943, 35184372088832, 205891132094649, 1000000000000000, 4177248169415651, 15407021574586368, 51185893014090757, 155568095557812224
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
-
[n^15: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Table[n^15,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
-
for(n=0,15,print1(n^15,", ")) \\ Derek Orr, Feb 27 2017
-
A010803(n)=n^15 \\ M. F. Hasler, Jul 03 2025
-
A010803 = lambda n: n**15 # M. F. Hasler, Jul 03 2025
A016793
a(n) = (3*n + 2)^5.
Original entry on oeis.org
32, 3125, 32768, 161051, 537824, 1419857, 3200000, 6436343, 11881376, 20511149, 33554432, 52521875, 79235168, 115856201, 164916224, 229345007, 312500000, 418195493, 550731776, 714924299, 916132832, 1160290625, 1453933568, 1804229351, 2219006624, 2706784157, 3276800000
Offset: 0
-
[(3*n+2)^5 : n in [0..30]]; // Vincenzo Librandi, Sep 29 2011
-
Table[(3n+2)^5,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{32,3125,32768,161051,537824,1419857},30] (* Harvey P. Dale, May 10 2024 *)
A016949
a(n) = (6*n + 3)^5.
Original entry on oeis.org
243, 59049, 759375, 4084101, 14348907, 39135393, 90224199, 184528125, 345025251, 601692057, 992436543, 1564031349, 2373046875, 3486784401, 4984209207, 6956883693, 9509900499, 12762815625, 16850581551, 21924480357, 28153056843, 35723051649, 44840334375, 55730836701
Offset: 0
A016961
a(n) = (6*n + 4)^5.
Original entry on oeis.org
1024, 100000, 1048576, 5153632, 17210368, 45435424, 102400000, 205962976, 380204032, 656356768, 1073741824, 1680700000, 2535525376, 3707398432, 5277319168, 7339040224, 10000000000, 13382255776, 17623416832, 22877577568, 29316250624, 37129300000, 46525874176
Offset: 0
-
[(6*n+4)^5: n in [0..30]]; // Vincenzo Librandi, May 06 2011
-
a[n_] := (6*n + 4)^5; Array[a, 20, 0] (* Amiram Eldar, Mar 31 2022 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{1024,100000,1048576,5153632,17210368,45435424},30] (* Harvey P. Dale, Jan 01 2025 *)
Comments