A204579
Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).
Original entry on oeis.org
1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 4, -5, 1;
[4] -36, 49, -14, 1;
[5] 576, -820, 273, -30, 1;
[6] -14400, 21076, -7645, 1023, -55, 1;
[7] 518400, -773136, 296296, -44473, 3003, -91, 1;
[8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
-
# From Peter Luschny, Feb 29 2024: (Start)
ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
# Alternative:
f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n): # (End)
# Assuming offset 0:
rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..7); # Peter Luschny, Aug 03 2024
-
rows = 10;
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
-
select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
-
def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012
A221976
The number of n X n matrices with zero determinant and with entries a permutation of [1,2,..,n^2].
Original entry on oeis.org
0, 0, 2736, 8290316160
Offset: 1
A239836
Number of ordered pairs of permutation functions f,g on a size n set where f(g(g(x))) = g(f(f(x))).
Original entry on oeis.org
1, 1, 2, 6, 48, 360, 2880, 20160, 241920, 3265920, 47174400, 678585600, 12933043200, 193037644800, 3661488230400, 74537438976000, 1736591560704000, 36991492521984000
Offset: 0
A350824
Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct run lengths and maximum value k, n >= 0, k = 0..floor(sqrt(8*n+1)-1/2).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 4, 0, 1, 8, 0, 1, 20, 36, 0, 1, 24, 36, 0, 1, 36, 72, 0, 1, 52, 108, 0, 1, 112, 576, 576, 0, 1, 128, 612, 576, 0, 1, 200, 1116, 1152, 0, 1, 264, 1584, 1728, 0, 1, 384, 2520, 2880, 0, 1, 700, 8064, 20736, 14400, 0, 1, 868, 9432, 22464, 14400
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 4;
0, 1, 4;
0, 1, 8;
0, 1, 20, 36;
0, 1, 24, 36;
0, 1, 36, 72;
0, 1, 52, 108;
0, 1, 112, 576, 576;
0, 1, 128, 612, 576;
0, 1, 200, 1116, 1152;
...
The T(5,1) = 1 pattern is 11111.
The T(5,2) = 8 patterns are 12222, 11222, 11122, 11112, 21111, 22111, 22211, 22221.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
T(n)={my(u=P(n), v=concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]}
{ my(A=T(16)); for(n=1, #A, print(A[n])) }
Original entry on oeis.org
1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, 6350400, 5336100, 768398400, 662547600, 577152576, 2029052025, 519437318400, 463325262400, 150117385017600, 135480939978384, 122885206329600, 111967718990400, 54192375991353600, 49770428644836900
Offset: 1
A061692
Triangle of generalized Stirling numbers.
Original entry on oeis.org
1, 1, 4, 1, 27, 36, 1, 172, 864, 576, 1, 1125, 17500, 36000, 14400, 1, 7591, 351000, 1746000, 1944000, 518400, 1, 52479, 7197169, 80262000, 191394000, 133358400, 25401600, 1, 369580, 151633440, 3691514176, 17188416000, 23866214400, 11379916800, 1625702400
Offset: 1
1; 1,4; 1,27,36; 1,172,864,576; ...
-
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(x*b(n-i)/i!^3, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!^3):
seq(T(n), n=1..10); # Alois P. Heinz, Sep 10 2019
-
R[0, ] = 1; R[n, x_] := R[n, x] = x*Sum[Binomial[n, k]^2*Binomial[n-1, k]*R[k, x], {k, 0, n-1}]; Table[CoefficientList[R[n, x], x] // Rest, {n, 1, 8}] // Flatten (* Jean-François Alcover, Sep 01 2015, after Peter Bala *)
A134373
a(n) = ((2n)!)^3.
Original entry on oeis.org
1, 8, 13824, 373248000, 65548320768000, 47784725839872000000, 109903340320478724096000000, 662559760549147780765974528000000, 9159226129831418921308831875072000000000, 262435789155225791087396177124997988352000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A134366,
A134367,
A134368,
A134369,
A134371,
A134373,
A134374,
A134375.
-
Table[((2n)!)^(3), {n, 0, 10}]
((2*Range[0, 10])!)^3 (* Harvey P. Dale, Jul 25 2016 *)
-
[factorial(2*n)**3 for n in range(0,9)] # Stefano Spezia, Apr 22 2025
A136301
Frequency of occurrence for each possible "probability of derangement" for a Secret Santa drawing in which each person draws a name in sequence and the only person who does not draw someone else's name is the one who draws the final name.
Original entry on oeis.org
1, 1, 1, 1, 5, 2, 1, 1, 13, 6, 13, 2, 6, 2, 1, 1, 29, 14, 73, 6, 42, 18, 29, 2, 18, 8, 14, 2, 6, 2, 1, 1, 61, 30, 301, 14, 186, 86, 301, 6, 102, 48, 186, 18, 102, 42, 61, 2, 42, 20, 86, 8, 48, 20, 30, 2, 18, 8, 14, 2, 6, 2, 1, 1, 125, 62, 1081, 30, 690, 330, 2069, 14, 414, 200, 1394
Offset: 3
Represented as a series of columns, where column j has 2^(j-1) rows, the sequence begins:
row |j = 1 2 3 4 5 ...
----+-------------------------
1 | 1 1 1 1 1 ...
2 | 1 5 13 29 ...
3 | 2 6 14 30 ...
4 | 1 13 73 301 ...
5 | 2 6 14 ...
6 | 6 42 186 ...
7 | 2 18 86 ...
8 | 1 29 301 ...
9 | 2 6 ...
10 | 18 102 ...
11 | 8 48 ...
12 | 14 186 ...
13 | 2 18 ...
14 | 6 102 ...
15 | 2 42 ...
16 | 1 61 ...
17 | 2 ...
... | ... ...
.
If there are 5 people, numbered 1-5 according to the order in which they draw a name, and person #5 draws name #5, the first four people must draw 1-4 as a proper derangement, and there are 9 ways of doing so: 21435 / 23415 / 24135 / 31425 / 34125 / 34215 / 41235 / 43125 / 43215.
But the probability of each derangement depends on how many choices exist at each successive draw. The first person can draw from 4 possibilities (2,3,4,5). The second person nominally has 3 to choose from, unless the first person drew number 2, in which case person 2 may draw 4 possibilities (1,3,4,5), and so on. The probabilities of 21435 and 24135 are both then
1/4 * 1/4 * 1/2 * 1/2 = 1/64.
More generally, if there are n people, at the i-th turn (i = 1..n), person i has either (n-i) or (n-i+1) choices, depending on whether the name of the person who is drawing has been chosen yet. A way to represent the two cases above is 01010, where a 0 indicates that the person's number is not yet drawn, and a 1 indicates it is.
For the n-th person to be forced to choose his or her own name, the last digit of this pattern must be 0, by definition. Similarly, the 1st digit must be a 0, and the second to last digit must be a 1. So all the problem patterns start with 0 and end with 10. For 5 people, that leaves 4 target patterns which cover all 9 derangements. By enumeration, that distribution can be shown to be (for the 3rd column = 5 person case):
0-00-10 1 occurrences
0-01-10 5 occurrences
0-10-10 2 occurrences
0-11-11 1 occurrences
1;
1, 1;
1, 5, 2, 1;
1, 13, 6, 13, 2, 6, 2, 1;
1, 29, 14, 73, 6, 42, 18, 29, 2, 18, 8, 14, 2, 6, 2, 1;
The application of this table towards final determination of the probabilities of derangements leads to sequence
A136300, which is the sequence of numerators. The denominators are in
A001044.
A048144 represents the peak value of all odd-numbers columns.
A000255 equals the sum of the bottom half of each column.
A000166 equals the sum of each column.
A047920 represents the frequency of replacements by person drawing at position n.
A008277, Triangle of Stirling numbers of 2nd kind, can be derived from
A136301 through a series of transformations (see "Probability of Derangements.pdf").
-
maxP = 15;
rows = Range[1, 2^(nP = maxP - 3)];
pasc = Table[
Binomial[p + 1, i] - If[i >= p, 1, 0], {p, nP}, {i, 0, p}];
sFreq = Table[0, {maxP - 1}, {2^nP}]; sFreq[[2 ;; maxP - 1, 1]] = 1;
For[p = 1, p <= nP, p++,
For[s = 1, s <= p, s++, rS = Range[2^(s - 1) + 1, 2^s];
sFreq[[p + 2, rS]] = pasc[[p + 1 - s, 1 ;; p + 2 - s]] .
sFreq[[s ;; p + 1, 1 ;; 2^(s - 1)]]]];
TableForm[ Transpose[ sFreq ] ]
(* Code snippet to illustrate the conjectured connection with A371761: *)
R[n_] := Table[Transpose[sFreq][[2^n]][[r]], {r, n + 1, maxP - 1}]
For[n = 0, n <= 6, n++, Print[n + 1, ": ", R[n]]] (* Peter Luschny, Apr 10 2024 *)
A136609
(1/(n!)^2) * number of ways to arrange the consecutive numbers 1...n^2 in an n X n matrix with determinant = 0.
Original entry on oeis.org
0, 0, 76, 14392910
Offset: 1
a(1)=0 because det((1))/=0, a(2)=0, because the only possible determinants of a matrix with elements {1,2,3,4} are +-2, +-5 and +-10.
A192722
T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
Original entry on oeis.org
1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
Offset: 1
The triangle begins
n/k|..1.....2.......3........4........5........6
================================================
.1.|..1
.2.|..1.....4
.3.|..1....18.....36
.4.|..1....68.....432......576
.5.|..1...250....3900....14400....14400
.6.|..1...922...32400...252000...648000...518400
...
T(4,2) = 68:
There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence
T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2
= 36 + 16 + 16 = 68.
Matrix identity: A192721 * Pascal's triangle = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....5.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
-
J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z):
G := 1/(1-x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 15)):
for n from 1 to 14 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2):
seq(T(n), n=1..14); # Alois P. Heinz, Sep 10 2019
-
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
Comments