cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A080806 Positive integer values of n such that 6*n^2-5 is a square.

Original entry on oeis.org

1, 3, 7, 29, 69, 287, 683, 2841, 6761, 28123, 66927, 278389, 662509, 2755767, 6558163, 27279281, 64919121, 270037043, 642633047, 2673091149, 6361411349, 26460874447, 62971480443, 261935653321, 623353393081, 2592895658763
Offset: 1

Views

Author

John W. Layman, Mar 24 2003

Keywords

Comments

The corresponding sequence for which 6n^2-6 is a square is A001079.
Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 20 = 0. - Colin Barker, Feb 09 2014

Examples

			29 is a term of the sequence since 6*29^2 - 5 = 5041 = 71^2.
		

Crossrefs

Programs

  • Magma
    I:=[1,3,7,29]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
  • Mathematica
    Do[ If[ IntegerQ[ Sqrt[6n^2 - 5]], Print[n]], {n, 1, 3*10^7}]
    a[1]=1; a[2]=3; a[3]=7; a[4]=29; a[n_] := a[n]=10a[n-2]-a[n-4]
    CoefficientList[Series[(1 - x) (1 + 4 x + x^2)/(1 - 10 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)

Formula

a(n) = 10*a(n-2)-a(n-4).
G.f.: x*(1-x)*(1+4*x+x^2)/(1-10*x^2+x^4). - Colin Barker, Jun 13 2012
a(2*n+1) = ((6+r)*(5+2*r)^n+(6-r)*(5+2*r)^n)/12, a(2*n+2) = ((18+7*r)*(5+2*r)^n+(18-7*r)*(5-2*r)^n)/12, where r=sqrt(6) and n>=0. - Paul Weisenhorn, Sep 01 2012

Extensions

Extended by Robert G. Wilson v, Apr 14 2003

A036353 Square pentagonal numbers.

Original entry on oeis.org

0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801, 708214619789503821274338711878841001, 6800276705461824703444258688161258139001
Offset: 0

Views

Author

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

Lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^8 = 4801 + 1960*sqrt(6). - Ant King, Nov 06 2011
Pentagonal numbers (A000326) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

Crossrefs

Programs

  • Mathematica
    Table[Floor[1/96 ( Sqrt[2] + Sqrt[3] ) ^ ( 8*n - 4 ) ] , {n, 0, 9}] (* Ant King, Nov 06 2011 *)
    LinearRecurrence[{9603,-9603,1},{0,1,9801,94109401},20] (* Harvey P. Dale, Apr 14 2019 *)
  • PARI
    for(n=0,10^9,g=(n*(3*n-1)/2); if(issquare(g),print(g)))
    
  • PARI
    concat(0, Vec(x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 24 2015

Formula

a(n) = 9602*a(n-1) - a(n-2) + 200; g.f.: x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)). - Warut Roonguthai, Jan 05 2001
a(n+1) = 4801*a(n)+100+980*(24*a(n)^2+a(n))^(1/2). - Richard Choulet, Sep 21 2007
From Ant King, Nov 06 2011: (Start)
a(n) = floor(1/96*(sqrt(2) + sqrt(3))^(8*n-4)).
a(n) = 9603*a(n-1) - 9603*a(n-2) + a(n-3).
(End)

Extensions

More terms from Eric W. Weisstein

A132596 X-values of solutions to the equation X*(X + 1) - 6*Y^2 = 0.

Original entry on oeis.org

0, 2, 24, 242, 2400, 23762, 235224, 2328482, 23049600, 228167522, 2258625624, 22358088722, 221322261600, 2190864527282, 21687323011224, 214682365584962, 2125136332838400, 21036680962799042, 208241673295152024
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Or, 3*A000217(X) is a square, (3*A004189(n))^2. - Zak Seidov, Apr 08 2009
"You can find an infinite number of [different] triangular numbers such that when multiplied together form a square number. For example, for every triangular number, T_n, there are an infinite number of other triangular numbers, T_m, such that T_n*T_m is a square. For example, T_2 * T_24 = 30^2." [Pickover] - Robert G. Wilson v, Apr 01 2010

References

  • Clifford A. Pickover, The Loom of God, Tapestries of Mathematics and Mysticism, Sterling, NY, 2009, page 33.

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
a(n) = (A001079(n) - 1)/2. - Max Alekseyev, Nov 13 2009
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) = 2*A098297(n).
G.f.: -2*x*(1+x) / ( (x-1)*(x^2-10*x+1) ). (End)
a(n) = 2*A098297(n) = (1/2)*(T(2*n,sqrt(3)) - 1), where T(n,x) is the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 31 2012

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A173130 a(n) = Cosh[(2 n - 1) ArcCosh[n]].

Original entry on oeis.org

0, 1, 26, 3363, 937444, 456335045, 343904160606, 371198523608647, 543466014742175624, 1036834190110356583689, 2499384905955651114739810, 7429238104512325157021090411, 26695718139185294187938997247212
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(2*n-2) * n^(2*n-1). - Vaclav Kotesovec, Apr 05 2016

A173131 a(n) = (Cosh[(2n-1)ArcSinh[n]])^2.

Original entry on oeis.org

1, 2, 1445, 19740250, 1361599599377, 298514762397852026, 160545187370375075046277, 179656719395983409634002348450, 373368546362937441101158606899394625
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcSinh[n]]^2], {n, 0, 10}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A173133 a(n) = Sinh[(2n-1) ArcSinh[n]].

Original entry on oeis.org

0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
    Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)

Formula

a(n) = 1/2 (n - sqrt(1 + n^2))^(2 n - 1) + 1/2 (n + sqrt(1 + n^2))^(2 n - 1). - Artur Jasinski, Feb 14 2010

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A237610 Positive integers k such that x^2 - 10xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

8, 15, 20, 23, 24, 32, 47, 60, 71, 72, 80, 87, 92, 95, 96, 116, 128, 135, 152, 159, 167, 180, 188, 191, 200, 207, 212, 215, 216, 239, 240, 263, 276, 284, 288, 303, 311, 320, 335, 344, 348, 359, 368, 375, 380, 383, 384, 392, 404, 423, 431, 447, 456, 464, 479
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Examples

			15 is in the sequence because x^2 - 10xy + y^2 + 15 = 0 has integer solutions, for example (x, y) = (2, 19).
		

Crossrefs

Cf. A072256 (k = 8), A129445 (k = 15), A080806 (k = 20), A074061 (k = 23), A001079 (k = 24).

Programs

  • PARI
    is(n)=m=bnfisintnorm(bnfinit(x^2-10*x+1),-n);#m>0&&denominator(polcoeff(m[1],1))==1 \\ Ralf Stephan, Feb 11 2014

A101124 Number triangle associated to Chebyshev polynomials of first kind.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0

Views

Author

Paul Barry, Dec 02 2004

Keywords

Examples

			As a number triangle, rows begin:
  {1},
  {0,1},
  {-1,1,1},
  {0,1,2,1},
  ...
As a square array, rows begin
   1, 1,  1,   1,    1, ...
   0, 1,  2,   3,    4, ...
  -1, 1,  7,  17,   31, ...
   0, 1, 26,  99,  244, ...
   1, 1, 97, 577, 1921, ...
		

Crossrefs

Row sums are A101125.
Diagonal sums are A101126.
Main diagonal gives A115066.
Mirror of A322836.
Cf. A053120.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2017 *)

Formula

Number triangle S(n, k)=T(n-k, k), k
Columns have g.f. x^k(1-kx)/(1-2kx+x^2).
Also, square array if(n=0, 1, T(n, k)) read by antidiagonals.

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Author

Artur Jasinski, Feb 10 2010

Keywords

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016
Previous Showing 21-30 of 49 results. Next