cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 360 results. Next

A083099 a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

Keywords

Comments

a(n+1) = a(n) + A083098(n+1). A083098(n+1)/a(n) converges to sqrt(7).
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005
Pisano period lengths: 1, 1, 2, 1, 12, 2, 7, 1, 6, 12, 60, 2,168, 7, 12, 1,288, 6, 18, 12, ... - R. J. Mathar, Aug 10 2012
a(n) is divisible by 2^ceiling(n/2), see formula below. - Ralf Stephan, Dec 24 2013
Connect the center of a regular hexagon with side length 1 with its six vertices. a(n) is the number of paths of length n from the center to any of its vertices. Number of paths of length n from the center to itself is 6*a(n-1). - Jianing Song, Apr 20 2019

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
    
  • Maple
    A083099 := proc(n)
        option remember;
        if n <= 1 then
            n;
        else
            2*procname(n-1)+6*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *)
    Expand[Table[((1 + Sqrt[7])^n - (1 - Sqrt[7])^n)7/(14Sqrt[7]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)
    LinearRecurrence[{2,6}, {0,1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
  • PARI
    a(n)=([0,1; 6,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
    
  • Sage
    [lucas_number1(n,2,-6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
    
  • SageMath
    A083099=BinaryRecurrenceSequence(2,6,0,1)
    [A083099(n) for n in range(41)] # G. C. Greubel, Jun 01 2023

Formula

G.f.: x/(1 - 2*x - 6*x^2).
From Paul Barry, Sep 29 2004: (Start)
E.g.f.: (d/dx)(exp(x)*sinh(sqrt(7)*x)/sqrt(7));
a(n-1) = Sum_{k=0..n} binomial(n, 2k+1)*7^k. (End)
Simplified formula: a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(28). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(2n) = 2^n * A154245(n), a(2n+1) = 2^n * (5*A154245(n) - 9*A154245(n-1)). - Ralf Stephan, Dec 24 2013
a(n) = Sum_{k=1,3,5,...<=n} binomial(n,k)*7^((k-1)/2). - Vladimir Shevelev, Feb 06 2014
a(n) = i^(n-1)*6^((n-1)/2)*ChebyshevU(n-1, -i/sqrt(6)). - G. C. Greubel, Jun 01 2023

A015519 a(n) = 2*a(n-1) + 7*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 11, 36, 149, 550, 2143, 8136, 31273, 119498, 457907, 1752300, 6709949, 25685998, 98341639, 376485264, 1441362001, 5518120850, 21125775707, 80878397364, 309637224677, 1185423230902, 4538307034543, 17374576685400
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005
Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - R. J. Mathar, Aug 10 2012

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    LinearRecurrence[{2,7},{0,1},30] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
  • Sage
    [lucas_number1(n,2,-7) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

From Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003: (Start)
a(n) = a(n-1) + A083100(n-2), n>1.
A083100(n)/a(n+1) converges to sqrt(8). (End)
From Paul Barry, Jul 17 2003: (Start)
G.f.: x/ ( 1-2*x-7*x^2 ).
a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. (End)
E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Nov 20 2003
Second binomial transform is A000129(2n)/2 (A001109). - Paul Barry, Apr 21 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*(7/2)^k*2^(n-k-1). - Paul Barry, Jul 17 2004
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*8^k. - Paul Barry, Sep 29 2004
G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A055830 Triangle T read by rows: diagonal differences of triangle A037027.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Or, coefficients of a generalized Lucas-Pell polynomial read by rows. - Philippe Deléham, Nov 05 2006
Equals A046854(shifted) * Pascal's triangle; where A046854 is shifted down one row and "1" inserted at (0,0). - Gary W. Adamson, Dec 24 2008

Examples

			Triangle begins:
   1
   1,   0
   2,   1,   0
   3,   3,   1,   0
   5,   7,   4,   1,   0
   8,  15,  12,   5,   1,   0
  13,  30,  31,  18,   6,   1,  0
  21,  58,  73,  54,  25,   7,  1, 0
  34, 109, 162, 145,  85,  33,  8, 1, 0
  55, 201, 344, 361, 255, 125, 42, 9, 1, 0
  ...
		

Crossrefs

Left-hand columns include A000045, A023610.
Row sums: A001333 (numerators of continued fraction convergents to sqrt(2)).
Cf. A122075 (another version).
Cf. A046854. - Gary W. Adamson, Dec 24 2008

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return Fibonacci(n+1);
      elif n eq 1 and k eq 1 then return 0;
      else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
    for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

Formula

G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006

Extensions

Edited by Ralf Stephan, Jan 12 2005

A171588 The Pell word: Fixed point of the morphism 0->001, 1->0.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Nov 22 2013: (Start)
This is a Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 001 and for n >= 1, S(n+1) = S(n)S(n)S(n-1). See the examples below.
This sequence corresponds to the case k = 2 of the Sturmian word S_k(infinity) as defined in A080764. See A159684 for the case k = 1. (End)
Characteristic word with slope 1 - 1/sqrt(2). Since the characteristic word with slope 1-theta is the mirror image of the characteristic word with slope theta, a(n)= 1 - A080764(n) for all n. - Michel Dekking, Jan 31 2017
The positions of 0 comprise A001951 (Beatty sequence for sqrt(2)); the positions of 1 comprise A001952 (Beatty sequence for 2+sqrt(2)). - Clark Kimberling, May 11 2017
This is also the fixed point of the mapping 00->0010, 01->001, 10->010, starting with 00 [Dekking and Keane, 2022]. See A289001. - N. J. A. Sloane, Mar 09 2022

Examples

			From _Peter Bala_, Nov 22 2013: (Start)
The sequence of words S(n) begins
  S(0) = 0
  S(1) = 001
  S(2) = 001 001 0
  S(3) = 0010010 0010010 001
  S(4) = 00100100010010001 00100100010010001 0010010.
The lengths of the words are [1, 3, 7, 17, 41, ...] = A001333 (apart from the initial term).  (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 284.

Crossrefs

Programs

  • Magma
    [Floor((n+1)*(1-1/Sqrt(2))-Floor(n*(1-1/Sqrt(2)))): n in [1..100]]; // Vincenzo Librandi, Jan 31 2017
    
  • Maple
    Digits := 50: u := evalf(2 + sqrt(2)): A171588 := n->floor((n+1)/u) - floor(n/u): seq(A171588(n), n = 1..80); # Peter Bala, Nov 22 2013
  • Mathematica
    Table[Floor[(n + 1) (1 - 1/Sqrt[2]) - Floor[n (1 - 1/Sqrt[2])]], {n, 100}] (* Vincenzo Librandi, Jan 31 2017 *)
    Nest[Flatten[# /. {0 -> {0, 0, 1}, 1 -> {0}}] &, {0}, 6] (* Clark Kimberling, May 11 2017 *)
  • Python
    from math import isqrt
    def A171588(n): return 1+isqrt(n**2>>1)-isqrt((n+1)**2>>1) # Chai Wah Wu, May 24 2025

Formula

a(n) = floor((n + 1)/(2 + sqrt(2))) - floor(n /(2 + sqrt(2))). - Peter Bala, Nov 22 2013
a(n) = floor((n+1)*(1 - 1/sqrt(2))) - floor(n*(1 - 1/sqrt(2))). - Michel Dekking, Jan 31 2017

A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 6 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(6). - Cino Hilliard, Sep 25 2005
a(n), n>0 = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 2,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
Pisano period lengths: 1, 1, 1, 4, 4, 1, 24, 4, 3, 4, 120, 4, 56, 24, 4, 8, 288, 3, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(k*m) is divisible by a(m) if k is odd. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    [(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Maple
    A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
    Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
    (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011

A052542 a(n) = 2*a(n-1) + a(n-2), with a(0) = 1, a(1) = 2, a(2) = 4.

Original entry on oeis.org

1, 2, 4, 10, 24, 58, 140, 338, 816, 1970, 4756, 11482, 27720, 66922, 161564, 390050, 941664, 2273378, 5488420, 13250218, 31988856, 77227930, 186444716, 450117362, 1086679440, 2623476242, 6333631924, 15290740090, 36915112104, 89120964298, 215157040700
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Apart from the initial 1, this sequence is simply twice the Pell numbers, A000129. - Antonio Alberto Olivares, Dec 31 2003
Image of 1/(1-2x) under the mapping g(x) -> g(x/(1+x^2)). - Paul Barry, Jan 16 2005
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators = A052542 and denominators = A001333. - Clark Kimberling, Aug 26 2008
a(n) is the number of generalized compositions of n+1 when there are 2*i-2 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Apart from the initial 1, this is the p-INVERT transform of (1,0,1,0,1,0,...) for p(S) = 1 - 2 S. See A291219. - Clark Kimberling, Sep 02 2017
Conjecture: Apart from the initial 1, a(n) is the number of compositions of two types of n having no even parts. - Gregory L. Simay, Feb 17 2018
For n>0, a(n+1) is the length of tau^n(10) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
The above conjecture is true, as the g.f. can be written as 1/(1 - (2*x)/(1 - x^2)). - John Tyler Rascoe, Jun 01 2024

Crossrefs

Cf. A052906. Essentially first differences of A001333.

Programs

  • GAP
    a:=[2,4];; for n in [3..40] do a[n]:=2*a[n-1]+a[n-2]; od; a; # G. C. Greubel, May 09 2019
  • Haskell
    a052542 n = a052542_list !! n
    a052542_list = 1 : 2 : 4 : tail (zipWith (+)
                   (map (* 2) $ tail a052542_list) a052542_list)
    -- Reinhard Zumkeller, Feb 24 2015
    
  • Magma
    I:=[2,4]; [n le 2 select I[n] else 2*Self(n-1) +Self(n-2): n in [1..40]]; // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Prod(Z,Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    A052542 := proc(n)
        option remember;
        if n <=2 then
            2^n;
        else
            2*procname(n-1)+procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
    A052542List := proc(m) local A, P, n; A := [1,2]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A052542List(31); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1}, LinearRecurrence[{2, 1}, {2, 4}, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2012 *)
  • PARI
    Vec((1-x^2)/(1-2*x-x^2) +O(x^40)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    ((1-x^2)/(1-2*x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - 2*x - x^2).
Recurrence: a(0)=1, a(2)=4, a(1)=2, a(n) + 2*a(n+1) - a(n+2) = 0;
a(n) = Sum_{alpha = RootOf(-1+2*x+x^2)} (1/2)*(1-alpha)*alpha^(-n-1).
a(n) = 2*A001333(n-1) + a(n-1), n > 1. A001333(n)/a(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
Binomial transform of A094024. a(n) = 0^n + ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/sqrt(2). - Paul Barry, Apr 22 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, k)2^(n-2k). - Paul Barry, Jan 16 2005
If p[i] = 2*(i mod 2) and if A is Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i=j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det A. - Milan Janjic, May 02 2010
a(n) = round(sqrt(Pell(2n) + Pell(2n-1))). - Richard R. Forberg, Jun 22 2014
a(n) = 2*A000129(n) + A000007(n) - Iain Fox, Nov 30 2017
a(n) = A000129(n) - A000129(n-2). - Gregory L. Simay, Feb 17 2018

A080253 a(n) is the number of elements in the Coxeter complex of type B_n (or C_n).

Original entry on oeis.org

1, 3, 17, 147, 1697, 24483, 423857, 8560947, 197613377, 5131725123, 148070287697, 4699645934547, 162723741209057, 6103779096411363, 246564971326084337, 10671541841672056947, 492664975795819140737, 24166020791610523843203
Offset: 0

Views

Author

Paul Boddington and Tim Honeywill, Feb 10 2003

Keywords

Comments

There is a nice geometric interpretation. Let V be a Euclidean space containing a root system of type B_n. We can decompose V into a disjoint union of 'cells', a cell being simply a maximal connected subset C of V with the property that if C has nonempty intersection with the orthogonal complement of some root a, then C lies entirely within the orthogonal complement of a. a(n) is then the number of cells.
For example, if n=2 then we can take V=R^2 and the roots to be (1,0), (0,1), (1,1), (-1, -1) and their negatives. The 17 cells are as follows: the set containing the origin O; the eight "open" halflines radiating from O and containing a root (but not O); the eight connected components of V minus the union of the nine cells already described. The corresponding sequences for types A,D are A000670, A080254 respectively.
Also number of signed orders.

Examples

			a(2)=17 as follows. Let (W,S) be a Coxeter system of type B_2. By definition the elements of the associated complex are right cosets of "special parabolic subgroups". These are simply the subgroups generated by subsets of S. In our case they have orders 1,2,2,8 and hence have 8,4,4,1 cosets respectively, giving a total of 17.
		

References

  • Kenneth S. Brown, Buildings, Springer-Verlag, 1989.

Crossrefs

Programs

  • Maple
    A080253 := proc(n) option remember; local k; if n <1 then 1 else 1 + add(2^r*binomial(n,r)*A080253(n-r),r=1..n); fi; end; seq(A080253(n),n=0..30); # Detlef Pauly
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[c[n], {n, 0, 100}] (* Emanuele Munarini, Oct 04 2012 *)
    CoefficientList[Series[E^x/(2-E^(2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 07 2015 *)
    Round@Table[(-1)^(n + 1) (PolyLog[-n, Sqrt[2]] - PolyLog[-n, -Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
    makelist(c(n),n,0,40); /* Emanuele Munarini, Oct 04 2012 */
    
  • Sage
    def A080253(n):
        return add(A060187(n, k) << (n-k) for k in (0..n))
    [A080253(n) for n in (0..17)]  # Peter Luschny, Apr 26 2013

Formula

a(n) = 1 + Sum_{r=1..n} 2^r *binomial(n, r) *a(n-r).
E.g.f.: exp(x)/(2-exp(2*x)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003
a(n) = Sum_{t=0..n} binomial(n, t)*2^(n-t)*A000670(n-t). Fishburn 2001, p. 57.
a(n) = Sum_{k=0..n} Stirling2(n, k)*k!*A001333(k+1). - Vladeta Jovovic, Sep 28 2003
2*a(n) = Sum_{k>=0} (2*k+1)^n/2^k = 2^n*LerchPhi(1/2,-n,1/2). - Gerson Washiski Barbosa, May 11 2009, Dec 12 2010
An approximation formula can be derived from the latter, a(n) ~ (n!/(2*sqrt(2)))*(2/log(2))^(n+1), with relative errors approaching asymptotically zero as n increases. - Gerson Washiski Barbosa, Jun 26 2009
Half the row sums of triangle A154695. - Gerson Washiski Barbosa, Jun 26 2009
G.f.: 1 + x/G(0) where G(k) = 1 - x*3*(2*k+1) + x^2*(k+1)*(k+1)*(1-3^2)/G(k+1); (continued fraction due to Stieltjes). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = Sum_{k = 0..n} A060187(n, k)*2^(n-k). - Peter Luschny, Apr 26 2013
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 8*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = log(2) * Integral_{x = 0..oo} (2*floor(x) + 1)^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
From Vladimir Reshetnikov, Oct 31 2015: (Start)
a(n) = (-1)^(n+1)*(Li_{-n}(sqrt(2)) - Li_{-n}(-sqrt(2)))/(2*sqrt(2)), where Li_n(x) is the polylogarithm.
Li_{-n}(sqrt(2)) = (-1)^(n+1)*(2*A216794(n) + a(n)*sqrt(2)).
(End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003

A079291 Squares of Pell numbers.

Original entry on oeis.org

0, 1, 4, 25, 144, 841, 4900, 28561, 166464, 970225, 5654884, 32959081, 192099600, 1119638521, 6525731524, 38034750625, 221682772224, 1292061882721, 7530688524100, 43892069261881, 255821727047184, 1491038293021225
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2003

Keywords

Comments

(-1)^(n+1)*a(n) is the r=-4 member of the r-" of sequences S_r(n), n>=1, defined in A092184 where more information can be found.
Binomial transform of A086346. - Johannes W. Meijer, Aug 01 2010
In general, squaring the terms of a Horadam sequence with signature (c,d) will result in a third-order recurrence with signature (c^2+d, c^2*d+d^2, -d^3). - Gary Detlefs, Nov 11 2021
(Conjectured) For any primitive Pythagorean triple of the form (X, Y, Z=Y+1), it appears that Y or Z will always be (and only be) a square Pell number if X = A001333(n), for n > 1. If n is even, Y is always a square Pell number, and if n is odd, then Z is always a square Pell number. For example: (3, 4, 5), (7, 24, 25), (17, 144, 145), (41, 840, 841), (99, 4900, 4901). - Jules Beauchamp, Feb 02 2022
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/2,1/2)-fences, black half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal), and white half-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using black (1/4,1/4)-fences, white (1/4,1/4)-fences, and (1/4,3/4)-fences. - Michael A. Allen, Dec 29 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,4]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2) - Self(n-3): n in [1..31]]; // Vincenzo Librandi, May 17 2013
    
  • Maple
    with(combinat):seq(fibonacci(i,2)^2, i=0..31); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    CoefficientList[Series[x(1-x)/((1+x)*(1-6x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 17 2013 *)
    LinearRecurrence[{5,5,-1},{0,1,4},40] (* Harvey P. Dale, Dec 20 2015 *)
    Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Sep 17 2021 *)
  • Sage
    [lucas_number1(n, 2, -1)^2 for n in (0..30)] # G. C. Greubel, Sep 17 2021

Formula

G.f.: x*(1-x)/((1+x)*(1-6*x+x^2)).
a(n) = (r^n + (1/r)^n - 2*(-1)^n)/8, with r = 3 + sqrt(8).
a(n+3) = 5*a(n+2) + 5*a(n+1) - a(n).
L.g.f.: (1/8)*log((1+2*x+x^2)/(1-6*x+x^2)) = Sum_{n>=0} (a(n)/n)*x^n, see p. 627 of the Fxtbook link; special case of the following: let v(0)=0, v(1)=1, and v(n) = u*v(n-1) + v(n-2), then (1/A)*log((1+2*x+x^2)/(1-(2-A)*x+x^2)) = Sum_{n>=0} v(n)^2/n*x^n where A = u^2 + 4. - Joerg Arndt, Apr 08 2011
a(n+1) = Sum_{k=0..n} ( (-1)^(n-k)*A001653(k) ); e.g., 144 = -1 + 5 - 29 + 169; 25 = 1 - 5 + 29. - Charlie Marion, Jul 16 2003
a(n) = A000129(n)^2.
a(n) = (T(n, 3) - (-1)^n)/4 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n) = ((3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n )/2. - Wolfdieter Lang, Oct 18 2004
a(n) is the rightmost term of M^n * [1 0 0] where M is the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. a(n+1) = leftmost term. E.g., a(6) = 4900, a(5) = 841 since M^5 * [1 0 0] = [4900 2030 841]. - Gary W. Adamson, Oct 31 2004
a(n) = ( (-1)^(n+1) + A001109(n+1) - 3*A001109(n) )/4. - R. J. Mathar, Nov 16 2007
a(n) = ( (((1 - sqrt(2))^n + (1 + sqrt(2))^n) /2 )^2 + (-1)^(n+1) )/2. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007
Lim_{k -> infinity} ( a(n+k)/a(k) ) = A001541(n) + 2*A001109(n)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
For n>0, a(2*n) = 6*a(2*n-1) - a(2*n-2) - 2, a(2*n+1) = 6*a(2*n) - a(2*n-1) + 2. - Charlie Marion, Sep 24 2011
a(n) = (1/8)*(A002203(2*n) - 2*(-1)^n). - G. C. Greubel, Sep 17 2021
Conjectured formula for (X, Y, Z) for primitive Pythagorean triple of the form (X, Y, Z=Y+1) is (A001333(n)^2, A079291(n)^2, A079291(n)^2-1) or (A001333(n)^2, A079291(n)^2-1, A079291(n)^2). As a closed formula (X, Y, Z) = (((1-sqrt(2))^n + (1+sqrt(2))^n)/2, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2 - 4)/8, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2 + 4)/8). - Jules Beauchamp, Feb 02 2022
From Michael A. Allen, Dec 29 2022: (Start)
a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.
a(n+1) = (1 + (-1)^n)/2 + 4*Sum_{k=1..n} ( k*a(n+1-k) ). (End)
Product_{n>=2} (1 + (-1)^n/a(n)) = (1 + sqrt(2))/2 (A174968) (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A122542 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2006, May 28 2007

Keywords

Comments

Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,  1;
  0, 2,  4,   1;
  0, 2,  8,   6,   1;
  0, 2, 12,  18,   8,    1;
  0, 2, 16,  38,  32,   10,   1;
  0, 2, 20,  66,  88,   50,  12,   1;
  0, 2, 24, 102, 192,  170,  72,  14,   1;
  0, 2, 28, 146, 360,  450, 292,  98,  16,  1;
  0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
		

Crossrefs

Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.

Programs

  • Haskell
    a122542 n k = a122542_tabl !! n !! k
    a122542_row n = a122542_tabl !! n
    a122542_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
    -- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
    
  • Magma
    function T(n, k) // T = A122542
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
  • Sage
    def A122542_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (0..n)]
    for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)
Previous Showing 61-70 of 360 results. Next