cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A114619 a(n) = 2*A079291(n) (twice squares of Pell numbers).

Original entry on oeis.org

0, 2, 8, 50, 288, 1682, 9800, 57122, 332928, 1940450, 11309768, 65918162, 384199200, 2239277042, 13051463048, 76069501250, 443365544448, 2584123765442, 15061377048200, 87784138523762, 511643454094368
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 2*(n-1)^2 else 5*Self(n-1) +5*Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    2*Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [2*lucas_number1(n,2,-1)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 2*A000129(n)^2.
G.f.: 2*x*(1-x)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2 - (-1)^n. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007

Extensions

Entry revised by N. J. A. Sloane, Mar 15 2024

A001653 Numbers k such that 2*k^2 - 1 is a square.

Original entry on oeis.org

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409, 10181446324101389, 59341817924539925
Offset: 1

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives Z values.
The defining equation is X^2 + (X+1)^2 = Z^2, which when doubled gives 2Z^2 = (2X+1)^2 + 1. So the sequence gives Z's such that 2Z^2 = odd square + 1 (A069894).
(x,y) = (a(n), a(n+1)) are the solutions with x < y of x/(yz) + y/(xz) + z/(xy)=3 with z=2. - Floor van Lamoen, Nov 29 2001
Consequently the sum n^2*(2n^2 - 1) of the first n odd cubes (A002593) is also a square. - Lekraj Beedassy, Jun 05 2002
Numbers n such that 2*n^2 = ceiling(sqrt(2)*n*floor(sqrt(2)*n)). - Benoit Cloitre, May 10 2003
Also, number of domino tilings in S_5 X P_2n. - Ralf Stephan, Mar 30 2004. Here S_5 is the star graph on 5 vertices with the edges {1,2}, {1,3}, {1,4}, {1,5}.
If x is in the sequence then so is x*(8*x^2-3). - James R. Buddenhagen, Jan 13 2005
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,6), where L is defined as in A108299; see also A002315 for L(n,-6). - Reinhard Zumkeller, Jun 01 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n >0, define C(n) to be the largest T-circle that intersects C(n-1). C(n) has radius a(n) and the coordinates of its points of intersection with C(n-1) are A001108(n) and A055997(n). Cf. A001109. - Charlie Marion, Sep 14 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5} which do not end in 0. - Tanya Khovanova, Jan 10 2007
The lower principal convergents to 2^(1/2), beginning with 1/1, 7/5, 41/29, 239/169, comprise a strictly increasing sequence; numerators = A002315 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Apparently Ljunggren shows that 169 is the last square term.
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with p < r then s-r = p+q+1. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = Y^2 with p < r then r = 3p+2q+1 and s = 4p+3q+2. - Mohamed Bouhamida, Sep 02 2009
Equals INVERT transform of A005054: (1, 4, 20, 100, 500, 2500, ...) and INVERTi transform of A122074: (1, 6, 40, 268, 1796, ...). - Gary W. Adamson, Jul 22 2010
a(n) is the number of compositions of n when there are 5 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
The remainder after division of a(n) by a(k) appears to belong to a periodic sequence: 1, 5, ..., a(k-1), 0, a(k)-a(k-1), ..., a(k)-1, a(k)-1, ..., a(k)-a(k-1), 0, a(k-1), ..., 5, 1. See Bouhamida's Sep 01 2009 comment. - Charlie Marion, May 02 2011
Apart from initial 1: subsequence of A198389, see also A198385. - Reinhard Zumkeller, Oct 25 2011
(a(n+1), 2*b(n+1)) and (a(n+2), 2*b(n+1)), n >= 0, with b(n):= A001109(n), give the (u(2*n), v(2*n)) and (u(2*n+1), v(2*n+1)) sequences, respectively, for Pythagorean triples (x,y,z), where x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, which are generated from (u(0)=1, v(0)=2) by the substitution rule (u,v) -> (2*v+u,v) if u < v and (u,v) -> (u,2*u+v) if u > v. This leads to primitive triples because gcd(u,v) = 1 is respected. This corresponds to (primitive) Pythagorean triangles with |x-y|=1 (the catheti differ by one length unit). This (u,v) sequence starts with (1,2), (5,2), (5,12), (29,12), (29,70) ... - Wolfdieter Lang, Mar 06 2012
Area of the Fibonacci snowflake of order n. - José Luis Ramírez Ramírez, Dec 13 2012
Area of the 3-generalized Fibonacci snowflake of order n, n >= 3. - José Luis Ramírez Ramírez, Dec 13 2012
For the o.g.f. given by Johannes W. Meijer, Aug 01 2010, in the formula section see a comment under A077445. - Wolfdieter Lang, Jan 18 2013
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 4 = 0. - Colin Barker, Feb 04 2014
Length of period of the continued fraction expansion of a(n)*sqrt(2) is 1, the corresponding repeating value is A077444(n). - Ralf Stephan, Feb 20 2014
Positive values of x (or y) satisfying x^2 - 34xy + y^2 + 144 = 0. - Colin Barker, Mar 04 2014
The value of the hypotenuse in each triple of the Tree of primitive Pythagorean triples (cf. Wikipedia link) starting with root (3,4,5) and recursively selecting the central branch at each triple node of the tree. - Stuart E Anderson, Feb 05 2015
Positive integers z such that z^2 is a centered square number (A001844). - Colin Barker, Feb 12 2015
The aerated sequence (b(n)) n >= 1 = [1, 0, 5, 0, 29, 0, 169, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. - Peter Bala, Mar 25 2015
A002315(n-1)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001541 and A001542 give a complete set of closest rational approximations of sqrt(2) with restricted numerator or denominator. A002315(n-1)/a(n) < sqrt(2). - A.H.M. Smeets, May 28 2017
Equivalently, numbers x such that (x-1)*x/2 + x*(x+1)/2 = y^2 + (y+1)^2. y-values are listed in A001652. Example: for x=29 and y=20, 28*29/2 + 29*30/2 = 20^2 + 21^2. - Bruno Berselli, Mar 19 2018
From Wolfdieter Lang, Jun 13 2018: (Start)
(a(n), a(n+1)), with a(0):= 1, give all proper positive solutions m1 = m1(n) and m2 = m2(n), with m1 < m2 and n >= 0, of the Markoff triple (m, m1, m2) (see A002559) for m = 2, i.e., m1^2 - 6*m1*m2 + m2^2 = -4. Hence the unique Markoff triple with largest value m = 2 is (1, 1, 2) (for general m from A002559 this is the famous uniqueness conjecture).
For X = m2 - m1 and Y = m2 this becomes the reduced indefinite quadratic form representation X^2 + 4*X*Y - 4*Y^2 = -4, with discriminant 32, and the only proper fundamental solution (X(0), Y(0)) = (0, 1). For all nonnegative proper (X(n), Y(n)) solutions see (A005319(n) = a(n+1) - a(n), a(n+1)), for n >= 0. (End)
Each Pell(2*k+1) = a(k+1) number with k >= 3 appears as largest number of an ordered Markoff (Markov) triple [x, y, m] with smallest value x = 2 as [2, Pell(2*k-1), Pell(2*k+1)]. This known result follows also from all positive proper solutions of the Pell equation q^2 - 2*m^2 = -1 which are q = q(k) = A002315(k) and m = m(k) = Pell(2*k+1), for k >= 0. y = y(k) = m(k) - 2*q(k) = Pell(2*k-1), with Pell(-1) = 1. The k = 0 and 1 cases do not satisfy x=2 <= y(k) <= m(k). The numbers 1 and 5 appear also as largest Markoff triple members because they are also Fibonacci numbers, and for these triples x=1. - Wolfdieter Lang, Jul 11 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0 < a < b < c are given by a=A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=a(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022

Examples

			From _Muniru A Asiru_, Mar 19 2018: (Start)
For k=1, 2*1^2 - 1 = 2 - 1 = 1 = 1^2.
For k=5, 2*5^2 - 1 = 50 - 1 = 49 = 7^2.
For k=29, 2*29^2 - 1 = 1682 - 1 = 1681 = 41^2.
... (End)
G.f. = x + 5*x^2 + 29*x^3 + 169*x^4 + 985*x^5 + 5741*x^6 + ... - _Michael Somos_, Jun 26 2022
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
  • W. Ljunggren, "Zur Theorie der Gleichung x^2+1=Dy^4", Avh. Norske Vid. Akad. Oslo I. 5, 27pp.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 91.

Crossrefs

Other two sides are A001652, A046090.
Cf. A001519, A001109, A005054, A122074, A056220, A056869 (subset of primes).
Row 6 of array A094954.
Row 1 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,5];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Mar 19 2018
  • Haskell
    a001653 n = a001653_list !! n
    a001653_list = 1 : 5 : zipWith (-) (map (* 6) $ tail a001653_list) a001653_list
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 22 2014
    
  • Maple
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001653:=-(-1+5*z)/(z**2-6*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
  • Mathematica
    LinearRecurrence[{6,-1}, {1,5}, 40] (* Harvey P. Dale, Jul 12 2011 *)
    a[ n_] := -(-1)^n ChebyshevU[2 n - 2, I]; (* Michael Somos, Jul 22 2018 *)
    Numerator[{1} ~Join~
    Table[FromContinuedFraction[Flatten[Table[{1, 4}, n]]], {n, 1, 40}]]; (* Greg Dresden, Sep 10 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n-1) + poltchebi(n), x, 3)/4}; /* Michael Somos, Nov 02 2002 */
    
  • PARI
    a(n)=([5,2;2,1]^(n-1))[1,1] \\ Lambert Klasen (lambert.klasen(AT)gmx.de), corrected by Eric Chen, Jun 14 2018
    
  • PARI
    {a(n) = -(-1)^n * polchebyshev(2*n-2, 2, I)}; /* Michael Somos, Jun 26 2022 */
    

Formula

G.f.: x*(1-x)/(1-6*x+x^2).
a(n) = 6*a(n-1) - a(n-2) with a(1)=1, a(2)=5.
4*a(n) = A077445(n).
Can be extended backwards by a(-n+1) = a(n).
a(n) = sqrt((A002315(n)^2 + 1)/2). [Inserted by N. J. A. Sloane, May 08 2000]
a(n+1) = S(n, 6)-S(n-1, 6), n>=0, with S(n, 6) = A001109(n+1), S(-2, 6) := -1. S(n, x)=U(n, x/2) are Chebyshev's polynomials of the second kind. Cf. triangle A049310. a(n+1) = T(2*n+1, sqrt(2))/sqrt(2), n>=0, with T(n, x) Chebyshev's polynomials of the first kind. [Offset corrected by Wolfdieter Lang, Mar 06 2012]
a(n) = A000129(2n+1). - Ira M. Gessel, Sep 27 2002
a(n) ~ (1/4)*sqrt(2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = (((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1)) - ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n)) / (4*sqrt(2)). Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 12 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 4) = a(n). - Benoit Cloitre, Nov 10 2002
For n and j >= 1, Sum_{k=0..j} a(k)*a(n) - Sum_{k=0..j-1} a(k)*a(n-1) = A001109(j+1)*a(n) - A001109(j)*a(n-1) = a(n+j); e.g., (1+5+29)*5 - (1+5)*1=169. - Charlie Marion, Jul 07 2003
From Charlie Marion, Jul 16 2003: (Start)
For n >= k >= 0, a(n)^2 = a(n+k)*a(n-k) - A084703(k)^2; e.g., 169^2 = 5741*5 - 144.
For n > 0, a(n) ^2 - a(n-1)^2 = 4*Sum_{k=0..2*n-1} a(k) = 4*A001109(2n); e.g., 985^2 - 169^2 = 4*(1 + 5 + 29 + ... + 195025) = 4*235416.
Sum_{k=0..n} ((-1)^(n-k)*a(k)) = A079291(n+1); e.g., -1 + 5 - 29 + 169 = 144.
A001652(n) + A046090(n) - a(n) = A001542(n); e.g., 119 + 120 - 169 = 70.
(End)
Sum_{k=0...n} ((2k+1)*a(n-k)) = A001333(n+1)^2 - (1 + (-1)^(n+1))/2; e.g., 1*169 + 3*29 + 5*5 + 7*1 = 288 = 17^2 - 1; 1*29 + 3*5 + 5*1 = 49 = 7^2. - Charlie Marion, Jul 18 2003
Sum_{k=0...n} a(k)*a(n) = Sum_{k=0..n} a(2k) and Sum_{k=0..n} a(k)*a(n+1) = Sum_{k=0..n} a(2k+1); e.g., (1+5+29)*29 = 1+29+985 and (1+5+29)*169 = 5+169+5741. - Charlie Marion, Sep 22 2003
For n >= 3, a_{n} = 7(a_{n-1} - a_{n-2}) + a_{n-3}, with a_1 = 1, a_2 = 5 and a_3 = 29. a(n) = ((-1+2^(1/2))/2^(3/2))*(3 - 2^(3/2))^n + ((1+2^(1/2))/2^(3/2))*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for n > 0, a(n)*b(n)*c(n)/(a(n)+b(n)+c(n)) = Sum_{k=0..n} c(2*k+1); e.g., 20*21*29/(20+21+29) = 5+169 = 174; a(n)*b(n)*c(n)/(a(n-1)+b(n-1)+c(n-1)) = Sum_{k=0..n} c(2*k); e.g., 119*120*169/(20+21+29) = 1+29+985+33461 = 34476. - Charlie Marion, Dec 01 2003
Also solutions x > 0 of the equation floor(x*r*floor(x/r))==floor(x/r*floor(x*r)) where r=1+sqrt(2). - Benoit Cloitre, Feb 15 2004
a(n)*a(n+3) = 24 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
For n >= k, a(n)*a(n+2*k+1) - a(n+k)*a(n+k+1) = a(k)^2-1; e.g., 29*195025-985*5741 = 840 = 29^2-1; 1*169-5*29 = 24 = 5^2-1; a(n)*a(n+2*k)-a(n+k)^2 = A001542(k)^2; e.g., 169*195025-5741^2 = 144 = 12^2; 1*29-5^2 = 4 = 2^2. - Charlie Marion Jun 02 2004
For all k, a(n) is a factor of a((2n+1)*k+n). a((2*n+1)*k+n) = a(n)*(Sum_{j=0..k-1} (-1)^j*(a((2*n+1)*(k-j)) + a((2*n+1)*(k-j)-1))+(-1)^k); e.g., 195025 = 5*(33461+5741-169-29+1); 7645370045 = 169*(6625109+1136689-1).- Charlie Marion, Jun 04 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)4^k. - Paul Barry, Aug 30 2004 [offset 0]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k+1)*2^k. - Paul Barry, Sep 30 2004 [offset 0]
For n < k, a(n)*A001541(k) = A011900(n+k)+A053141(k-n-1); e.g., 5*99 = 495 = 493+2. For n >= k, a(n)*A001541(k) = A011900(n+k)+A053141(n-k); e.g., 29*3 = 87 = 85+2. - Charlie Marion, Oct 18 2004
a(n) = (-1)^n*U(2*n, i*sqrt(4)/2) = (-1)^n*U(2*n, i), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Pell(2*n+1) = Pell(n)^2 + Pell(n+1)^2. - Paul Barry, Jul 18 2005 [offset 0]
a(n)*a(n+k) = A000129(k)^2 + A000129(2n+k+1)^2; e.g., 29*5741 = 12^2+169^2. - Charlie Marion, Aug 02 2005
Let a(n)*a(n+k) = x. Then 2*x^2-A001541(k)*x+A001109(k)^2 = A001109(2*n+k+1)^2; e.g., let x=29*985; then 2x^2-17x+6^2 = 40391^2; cf. A076218. - Charlie Marion, Aug 02 2005
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)+b^((2n+1)/2))/(2*sqrt(2)). a(n) = A001109(n+1)-A001109(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
If k is in the sequence, then the next term is floor(k*(3+2*sqrt(2))). - Lekraj Beedassy, Jul 19 2005
a(n) = Jacobi_P(n,-1/2,1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*Pell(n-j+1), where Pell = A000129. - Paul Barry, May 19 2006 [offset 0]
a(n) = round(sqrt(A002315(n)^2/2)). - Lekraj Beedassy, Jul 15 2006
a(n) = A079291(n) + A079291(n+1). - Lekraj Beedassy, Aug 14 2006
a(n+1) = 3*a(n) + sqrt(8*a(n)^2-4), a(1)=1. - Richard Choulet, Sep 18 2007
6*a(n)*a(n+1) = a(n)^2+a(n+1)^2+4; e.g., 6*5*29 = 29^2+5^2+4; 6*169*985 = 169^2+985^2+4. - Charlie Marion, Oct 07 2007
2*A001541(k)*a(n)*a(n+k) = a(n)^2+a(n+k)^2+A001542(k)^2; e.g., 2*3*5*29 = 5^2+29^2+2^2; 2*99*29*5741 = 2*99*29*5741=29^2+5741^2+70^2. - Charlie Marion, Oct 12 2007
[a(n), A001109(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
From Charlie Marion, Apr 10 2009: (Start)
In general, for n >= k, a(n+k) = 2*A001541(k)*a(n)-a(n-k);
e.g., a(n+0) = 2*1*a(n)-a(n); a(n+1) = 6*a(n)-a(n-1); a(6+0) = 33461 = 2*33461-33461; a(5+1) = 33461 = 6*5741-985; a(4+2) = 33461 = 34*985-29; a(3+3) = 33461 = 198*169-1.
(End)
G.f.: sqrt(x)*tan(4*arctan(sqrt(x)))/4. - Johannes W. Meijer, Aug 01 2010
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = a(n-1)*k-((k-1)/(k^n)). - Charles L. Hohn, Mar 06 2011
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(n) - a(n-1). - Charles L. Hohn, Apr 04 2011
Let T(n) be the n-th triangular number; then, for n > 0, T(a(n)) + A001109(n-1) = A046090(n)^2. See also A046090. - Charlie Marion, Apr 25 2011
For k > 0, a(n+2*k-1) - a(n) = 4*A001109(n+k-1)*A002315(k-1); a(n+2*k) - a(n) = 4*A001109(k)*A002315(n+k-1). - Charlie Marion, Jan 06 2012
a(k+j+1) = (A001541(k)*A001541(j) + A002315(k)*A002315(j))/2. - Charlie Marion, Jun 25 2012
a(n)^2 = 2*A182435(n)*(A182435(n)-1)+1. - Bruno Berselli, Oct 23 2012
a(n) = A143608(n-1)*A143608(n) + 1 = A182190(n-1)+1. - Charlie Marion, Dec 11 2012
G.f.: G(0)*(1-x)/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
a(n+1) = 4*A001652(n) + 3*a(n) + 2 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 = A001652(n-1)^2 + (A001652(n-1)+1)^2. - Hermann Stamm-Wilbrandt, Aug 31 2014
Sum_{n >= 2} 1/( a(n) - 1/a(n) ) = 1/4. - Peter Bala, Mar 25 2015
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^floor(k/2). - David Pasino, Jul 09 2016
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + 2*cosh(2*sqrt(2)*x))*exp(3*x)/2. - Ilya Gutkovskiy, Jul 09 2016
a(n+2) = (a(n+1)^2 + 4)/a(n). - Vladimir M. Zarubin, Sep 06 2016
a(n) = 2*A053141(n)+1. - R. J. Mathar, Aug 16 2019
For n>1, a(n) is the numerator of the continued fraction [1,4,1,4,...,1,4] with (n-1) repetitions of 1,4. For the denominators see A005319. - Greg Dresden, Sep 10 2019
a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/4). - Paul Weisenhorn, May 23 2020
a(n+1) = Sum_{k >= n} binomial(2*k,2*n)*(1/2)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n+1) = 3*a(n) + A077444(n). - César Aguilera, Jul 13 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Better description from Harvey P. Dale, Jan 15 2002
Edited by N. J. A. Sloane, Nov 02 2002

A001541 a(0) = 1, a(1) = 3; for n > 1, a(n) = 6*a(n-1) - a(n-2).

Original entry on oeis.org

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, 3880899, 22619537, 131836323, 768398401, 4478554083, 26102926097, 152139002499, 886731088897, 5168247530883, 30122754096401, 175568277047523, 1023286908188737, 5964153172084899, 34761632124320657
Offset: 0

Views

Author

Keywords

Comments

Chebyshev polynomials of the first kind evaluated at 3.
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 8*y^2 = 1, the corresponding values of y are in A001109. For n > 0, the ratios a(n)/A001090(n) may be obtained as convergents to sqrt(8): either successive convergents of [3; -6] or odd convergents of [2; 1, 4]. - Lekraj Beedassy, Sep 09 2003 [edited by Jon E. Schoenfield, May 04 2014]
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r = sqrt(8). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions greater than 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r = sqrt(2). - Benoit Cloitre, Feb 24 2004
This sequence give numbers n such that (n-1)*(n+1)/2 is a perfect square. Remark: (i-1)*(i+1)/2 = (i^2-1)/2 = -1 = i^2 with i = sqrt(-1) so i is also in the sequence. - Pierre CAMI, Apr 20 2005
a(n) is prime for n = {1, 2, 4, 8}. Prime a(n) are {3, 17, 577, 665857}, which belong to A001601(n). a(2k-1) is divisible by a(1) = 3. a(4k-2) is divisible by a(2) = 17. a(8k-4) is divisible by a(4) = 577. a(16k-8) is divisible by a(8) = 665857. - Alexander Adamchuk, Nov 24 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators=A001541 and denominators=A001542. - Clark Kimberling, Aug 26 2008
Also index of sequence A082532 for which A082532(n) = 1. - Carmine Suriano, Sep 07 2010
Numbers n such that sigma(n-1) and sigma(n+1) are both odd numbers. - Juri-Stepan Gerasimov, Mar 28 2011
Also, numbers such that floor(a(n)^2/2) is a square: base 2 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001075. - M. F. Hasler, Jan 15 2012
Numbers such that 2n^2 - 2 is a square. Also integer square roots of the expression 2*n^2 + 1, at values of n given by A001542. Also see A228405 regarding 2n^2 -+ 2^k generally for k >= 0. - Richard R. Forberg, Aug 20 2013
Values of x (or y) in the solutions to x^2 - 6xy + y^2 + 8 = 0. - Colin Barker, Feb 04 2014
Panda and Ray call the numbers in this sequence the Lucas-balancing numbers C_n (see references and links).
Partial sums of X or X+1 of Pythagorean triples (X,X+1,Z). - Peter M. Chema, Feb 03 2017
a(n)/A001542(n) is the closest rational approximation to sqrt(2) with a numerator not larger than a(n), and 2*A001542(n)/a(n) is the closest rational approximation to sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations to sqrt(2) with restricted numerator or denominator. a(n)/A001542(n) > sqrt(2) > 2*A001542(n)/a(n). - A.H.M. Smeets, May 28 2017
x = a(n), y = A001542(n) are solutions of the Diophantine equation x^2 - 2y^2 = 1 (Pell equation). x = 2*A001542(n), y = a(n) are solutions of the Diophantine equation x^2 - 2y^2 = -2. Both together give the set of fractional approximations for sqrt(2) obtained from limited fractions obtained from continued fraction representation to sqrt(2). - A.H.M. Smeets, Jun 22 2017
a(n) is the radius of the n-th circle among the sequence of circles generated as follows: Starting with a unit circle centered at the origin, every subsequent circle touches the previous circle as well as the two limbs of hyperbola x^2 - y^2 = 1, and lies in the region y > 0. - Kaushal Agrawal, Nov 10 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0Michael Somos, Jun 26 2022

Examples

			99^2 + 99^2 = 140^2 + 2. - _Carmine Suriano_, Jan 05 2015
G.f. = 1 + 3*x + 17*x^2 + 99*x^3 + 577*x^4 + 3363*x^5 + 19601*x^6 + 114243*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • J. W. L. Glaisher, On Eulerian numbers (formulas, residues, end-figures), with the values of the first twenty-seven, Quarterly Journal of Mathematics, vol. 45, 1914, pp. 1-51.
  • G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium 194 (2009), 185-189.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of A001333. A003499(n) = 2a(n).
Cf. A055997 = numbers n such that n(n-1)/2 is a square.
Row 1 of array A188645.
Cf. A055792 (terms squared), A132592.

Programs

  • Haskell
    a001541 n = a001541_list !! (n-1)
    a001541_list =
    1 : 3 : zipWith (-) (map (* 6) $ tail a001541_list) a001541_list
    -- Reinhard Zumkeller, Oct 06 2011
    (Scheme, with memoization-macro definec)
    (definec (A001541 n) (cond ((zero? n) 1) ((= 1 n) 3) (else (- (* 6 (A001541 (- n 1))) (A001541 (- n 2))))))
    ;; Antti Karttunen, Oct 04 2016
  • Magma
    [n: n in [1..10000000] |IsSquare(8*(n^2-1))]; // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a[0]:=1: a[1]:=3: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001541:=-(-1+3*z)/(1-6*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Simplify[(1/2) (3 + 2 Sqrt[2])^n + (1/2) (3 - 2 Sqrt[2])^n], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    a[ n_] := If[n == 0, 1, With[{m = Abs @ n}, m Sum[4^i Binomial[m + i, 2 i]/(m + i), {i, 0, m}]]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := ChebyshevT[ n, 3]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{6, -1}, {1, 3}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    {a(n) = real((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n)), x, 3)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = if( n<0, a(-n), polsym(1 - 6*x + x^2, n) [n+1] / 2)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n, 1, 3)}; /* Michael Somos, Jul 11 2011 */
    
  • PARI
    a(n)=([1,2,2;2,1,2;2,2,3]^n)[3,3] \\ Vim Wenders, Mar 28 2007
    

Formula

G.f.: (1-3*x)/(1-6*x+x^2). - Barry E. Williams and Wolfdieter Lang, May 05 2000
E.g.f.: exp(3*x)*cosh(2*sqrt(2)*x). Binomial transform of A084128. - Paul Barry, May 16 2003
From N. J. A. Sloane, May 16 2003: (Start)
a(n) = sqrt(8*((A001109(n))^2) + 1).
a(n) = T(n, 3), with Chebyshev's T-polynomials A053120. (End)
a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n)/2.
a(n) = cosh(2*n*arcsinh(1)). - Herbert Kociemba, Apr 24 2008
a(n) ~ (1/2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all elements x of the sequence, 2*x^2 - 2 is a square. Limit_{n -> infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002 [corrected by Peter Pein, Mar 09 2009]
a(n) = 3*A001109(n) - A001109(n-1), n >= 1. - Barry E. Williams and Wolfdieter Lang, May 05 2000
For n >= 1, a(n) = A001652(n) - A001652(n-1). - Charlie Marion, Jul 01 2003
From Paul Barry, Sep 18 2003: (Start)
a(n) = ((-1+sqrt(2))^n + (1+sqrt(2))^n + (1-sqrt(2))^n + (-1-sqrt(2))^n)/4 (with interpolated zeros).
E.g.f.: cosh(x)*cosh(sqrt(2)x) (with interpolated zeros). (End)
For n > 0, a(n)^2 + 1 = 2*A001653(n-1)*A001653(n). - Charlie Marion, Dec 21 2003
a(n)^2 + a(n+1)^2 = 2*(A001653(2*n+1) - A001652(2*n)). - Charlie Marion, Mar 17 2003
a(n) = Sum_{k >= 0} binomial(2*n, 2*k)*2^k = Sum_{k >= 0} A086645(n, k)*2^k. - Philippe Deléham, Feb 29 2004
a(n)*A002315(n+k) = A001652(2*n+k) + A001652(k) + 1; for k > 0, a(n+k)*A002315(n) = A001652(2*n+k) - A001652(k-1). - Charlie Marion, Mar 17 2003
For n > k, a(n)*A001653(k) = A011900(n+k) + A053141(n-k-1). For n <= k, a(n)*A001653(k) = A011900(n+k) + A053141(k-n). - Charlie Marion, Oct 18 2004
A053141(n+1) + A055997(n+1) = a(n+1) + A001109(n+1). - Creighton Dement, Sep 16 2004
a(n+1) - A001542(n+1) = A090390(n+1) - A046729(n) = A001653(n); a(n+1) - 4*A079291(n+1) = (-1)^(n+1). Formula generated by the floretion - .5'i + .5'j - .5i' + .5j' - 'ii' + 'jj' - 2'kk' + 'ij' + .5'ik' + 'ji' + .5'jk' + .5'ki' + .5'kj' + e. - Creighton Dement, Nov 16 2004
a(n) = sqrt( A055997(2*n) ). - Alexander Adamchuk, Nov 24 2006
a(2n) = A056771(n). a(2*n+1) = 3*A077420(n). - Alexander Adamchuk, Feb 01 2007
a(n) = (A000129(n)^2)*4 + (-1)^n. - Vim Wenders, Mar 28 2007
2*a(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + A001542(k)^2. - Charlie Marion, Oct 12 2007
a(n) = A001333(2*n). - Ctibor O. Zizka, Aug 13 2008
A028982(a(n)-1) + 2 = A028982(a(n)+1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n) = 2*A001108(n) + 1. - Paul Weisenhorn, Dec 17 2011
a(n) = sqrt(2*x^2 + 1) with x being A001542(n). - Zak Seidov, Jan 30 2013
a(2n) = 2*a(n)^2 - 1 = a(n)^2 + 2*A001542(n)^2. a(2*n+1) = 1 + 2*A002315(n)^2. - Steven J. Haker, Dec 04 2013
a(n) = 3*a(n-1) + 4*A001542(n-1); e.g., a(4) = 99 = 3*17 + 4*12. - Zak Seidov, Dec 19 2013
a(n) = cos(n * arccos(3)) = cosh(n * log(3 + 2*sqrt(2))). - Daniel Suteu, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Inverse binomial transform of A084130.
Exponential convolution of A000079 and A084058.
Sum_{n>=0} (-1)^n*a(n)/n! = cosh(2*sqrt(2))/exp(3) = 0.4226407909842764637... (End)
a(2*n+1) = 2*a(n)*a(n+1) - 3. - Timothy L. Tiffin, Oct 12 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jan 20 2017
a(2^n) = A001601(n+1). - A.H.M. Smeets, May 28 2017
a(A298210(n)) = A002350(2*n^2). - A.H.M. Smeets, Jan 25 2018
a(n) = S(n, 6) - 3*S(n-1, 6), for n >= 0, with S(n, 6) = A001109(n+1), (Chebyshev S of A049310). See the first comment and the formula a(n) = T(n, 3). - Wolfdieter Lang, Nov 22 2020
From Peter Bala, Dec 31 2021: (Start)
a(n) = [x^n] (3*x + sqrt(1 + 8*x^2))^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) hold for all prime p and positive integers n and k.
O.g.f. A(x) = 1 + x*d/dx(log(B(x))), where B(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. of A001850. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - 2/a(n)) = 1/2.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 1/a(n)) = 1/4.
Sum_{n >= 1} 1/(a(n)^2 - 2) = 1/2 - 1/sqrt(8). (End)
From Peter Bala, Jun 23 2025: (Start)
Product_{n >= 0} (1 + 1/a(2^n)) = sqrt(2).
Product_{n >= 0} (1 - 1/(2*a(2^n))) = (4/7)*sqrt(2). See A002812. (End)

A007598 Squared Fibonacci numbers: a(n) = F(n)^2 where F = A000045.

Original entry on oeis.org

0, 1, 1, 4, 9, 25, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129, 372100, 974169, 2550409, 6677056, 17480761, 45765225, 119814916, 313679521, 821223649, 2149991424, 5628750625, 14736260449, 38580030724, 101003831721, 264431464441, 692290561600
Offset: 0

Views

Author

Keywords

Comments

a(n)*(-1)^(n+1) = (2*(1-T(n,-3/2))/5), n>=0, with Chebyshev's polynomials T(n,x) of the first kind, is the r=-1 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found. - Wolfdieter Lang, Oct 18 2004
From Giorgio Balzarotti, Mar 11 2009: (Start)
Determinant of power series with alternate signs of gamma matrix with determinant 1!.
a(n) = Determinant(A - A^2 + A^3 - A^4 + A^5 - ... - (-1)^n*A^n) where A is the submatrix A(1..2,1..2) of the matrix with factorial determinant.
A = [[1,1,1,1,1,1,...], [1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
a(n) is even with respect to signs of power of A.
See A158039...A158050 for sequence with matrix 2!, 3!, ... (End)
Equals the INVERT transform of (1, 3, 2, 2, 2, ...). Example: a(7) = 169 = (1, 1, 4, 9, 25, 64) dot (2, 2, 2, 2, 3, 1) = (2 + 2 + 8 + 18 + 75 + 64). - Gary W. Adamson, Apr 27 2009
This is a divisibility sequence.
a(n+1)*(-1)^n, n>=0, is the sequence of the alternating row sums of the Riordan triangle A158454. - Wolfdieter Lang, Dec 18 2010
a(n+1) is the number of tilings of a 2 X 2n rectangle with n tetrominoes of any shape, cf. A230031. - Alois P. Heinz, Nov 29 2013
This is the case P1 = 1, P2 = -6, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014
Differences between successive golden rectangle numbers A001654. - Jonathan Sondow, Nov 05 2015
a(n+1) is the number of 2 X n matrices that can be obtained from a 2 X n matrix by moving each element to an adjacent position, horizontally or vertically. This is because F(n+1) is the number of domino tilings of that matrix, therefore with a checkerboard coloring and two domino tilings we can move the black element of each domino of the first tiling to the white element of the same domino and similarly move the white element of each domino of the second tiling to the black element of the same domino. - Fabio Visonà, May 04 2022
In general, squaring the terms of a second-order linear recurrence with signature (c,d) will result in a third-order linear recurrence with signature (c^2+d,(c^2+d)*d,-d^3). - Gary Detlefs, Jan 05 2023

Examples

			G.f. = x + x^2 + 4*x^3 + 9*x^4 + 25*x^5 + 64*x^6 + 169*x^7 + 441*x^8 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 8.
  • Ross Honsberger, Mathematical Gems III, M.A.A., 1985, p. 130.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics I, Example 4.7.14, p. 251.

Crossrefs

Bisection of A006498 and A074677. First differences of A001654.
Second row of array A103323.
Half of A175395.

Programs

  • GAP
    List([0..30], n -> Fibonacci(n)^2); # G. C. Greubel, Dec 10 2018
    
  • Haskell
    a007598 = (^ 2) . a000045  -- Reinhard Zumkeller, Sep 01 2013
    
  • Magma
    [Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    with(combinat): seq(fibonacci(n)^2, n=0..27); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    f[n_] := Fibonacci[n]^2; Array[f, 4!, 0] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
    LinearRecurrence[{2,2,-1},{0,1,1},41] (* Harvey P. Dale, May 18 2011 *)
  • PARI
    {a(n) = fibonacci(n)^2};
    
  • PARI
    concat(0, Vec(x*(1-x)/((1+x)*(1-3*x+x^2)) + O(x^30))) \\ Altug Alkan, Nov 06 2015
    
  • Python
    from sympy import fibonacci
    def A007598(n): return fibonacci(n)**2 # Chai Wah Wu, Apr 14 2025
  • Sage
    [(fibonacci(n))^2 for n in range(0, 28)]# Zerinvary Lajos, May 15 2009
    
  • Sage
    [fibonacci(n)^2 for n in range(30)] # G. C. Greubel, Dec 10 2018
    

Formula

G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), n > 2. a(0)=0, a(1)=1, a(2)=1.
a(-n) = a(n) for all n in Z.
a(n) = A080097(n-2) + 1.
L.g.f.: 1/5*log((1+3*x+x^2)/(1-6*x+x^2)) = Sum_{n>=0} a(n)/n*x^n; special case of l.g.f. given in A079291. - Joerg Arndt, Apr 13 2011
a(0) = 0, a(1) = 1; a(n) = a(n-1) + Sum(a(n-i)) + k, 0 <= i < n where k = 1 when n is odd, or k = -1 when n is even. E.g., a(2) = 1 = 1 + (1 + 1 + 0) - 1, a(3) = 4 = 1 + (1 + 1 + 0) + 1, a(4) = 9 = 4 + (4 + 1 + 1 + 0) - 1, a(5) = 25 = 9 + (9 + 4 + 1 + 1 + 0) + 1. - Sadrul Habib Chowdhury (adil040(AT)yahoo.com), Mar 02 2004
a(n) = (2*Fibonacci(2*n+1) - Fibonacci(2*n) - 2*(-1)^n)/5. - Ralf Stephan, May 14 2004
a(n) = F(n-1)*F(n+1) - (-1)^n = A059929(n-1) - A033999(n).
Sum_{j=0..2*n} binomial(2*n,j)*a(j) = 5^(n-1)*A005248(n+1) for n >= 1 [P. Stanica]. Sum_{j=0..2*n+1} binomial(2*n+1,j)*a(j) = 5^n*A001519(n+1) [P. Stanica]. - R. J. Mathar, Oct 16 2006
a(n) = (A005248(n) - 2*(-1)^n)/5. - R. J. Mathar, Sep 12 2010
a(n) = (-1)^k*(Fibonacci(n+k)^2-Fibonacci(k)*Fibonacci(2*n+k)), for any k. - Gary Detlefs, Dec 13 2010
a(n) = 3*a(n-1) - a(n-2) + 2*(-1)^(n+1), n > 1. - Gary Detlefs, Dec 20 2010
a(n) = Fibonacci(2*n-2) + a(n-2). - Gary Detlefs, Dec 20 2010
a(n) = (Fibonacci(3*n) - 3*(-1)^n*Fibonacci(n))/(5*Fibonacci(n)), n > 0. - Gary Detlefs, Dec 20 2010
a(n) = (Fibonacci(n)*Fibonacci(n+4) - 3*Fibonacci(n)*Fibonacci(n+1))/2. - Gary Detlefs, Jan 17 2011
a(n) = (((3+sqrt(5))/2)^n + ((3-sqrt(5))/2)^n - 2*(-1)^n)/5; without leading zero we would have a(n) = ((3+sqrt(5))*((3+sqrt(5))/2)^n + (3-sqrt(5))*((3-sqrt(5))/2)^n + 4*(-1)^n)/10. - Tim Monahan, Jul 17 2011
E.g.f.: (exp((phi+1)*x) + exp((2-phi)*x) - 2*exp(-x))/5, with the golden section phi:=(1+sqrt(5))/2. From the Binet-de Moivre formula for F(n). - Wolfdieter Lang, Jan 13 2012
Starting with "1" = triangle A059260 * the Fibonacci sequence as a vector. - Gary W. Adamson, Mar 06 2012
a(0) = 0, a(1) = 1; a(n+1) = (a(n)^(1/2) + a(n-1)^(1/2))^2. - Thomas Ordowski, Jan 06 2013
a(n) + a(n-1) = A001519(n), n > 0. - R. J. Mathar, Mar 19 2014
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = 3/2 and beta = -1 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 3/2; 1, 1/2].
a(n) = U(n-1,i/2)*U(n-1,-i/2), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = (F(n+2)*F(n+3) - L(n)*L(n+1))/3 for F = A000045 and L = A000032. - J. M. Bergot, Jun 02 2014
0 = a(n)*(+a(n) - 2*a(n+1) - 2*a(n+2)) + a(n+1)*(+a(n+1) - 2*a(n+2)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Jun 03 2014
(F(n)*b(n+2))^2 + (F(n+1)*b(n-1))^2 = F(2*n+1)^3 = A001519(n+1)^3, with b(n) = a(n) + 2*(-1)^n and F(n) = A000045(n) (see Bruckman link). - Michel Marcus, Jan 24 2015
a(n) = 1/4*( a(n-2) - a(n-1) - a(n+1) + a(n+2) ). The same recurrence holds for A001254. - Peter Bala, Aug 18 2015
a(n) = F(n)*F(n+1) - F(n-1)*F(n). - Jonathan Sondow, Nov 05 2015
For n>2, a(n) = F(n-2)*(3*F(n-1) + F(n-3)) + F(2*n-5). Also, for n>2 a(n)=2*F(n-3)*F(n) + F(2*n-3) -(2)*(-1)^n. - J. M. Bergot, Nov 05 2015
a(n) = (F(n+2)^2 + L(n+1)^2) - 2*F(n+2)*L(n+1). - J. M. Bergot, Nov 08 2015
a(n) = F(n+3)^2 - 4*F(n+1)*F(n+2). - J. M. Bergot, Mar 17 2016
a(n) = (F(n-2)*F(n+2) + F(n-1)*F(n+1))/2. - J. M. Bergot, May 25 2017
4*a(n) = L(n+1)*L(n-1) - F(n+2)*F(n-2), where L = A000032. - Bruno Berselli, Sep 27 2017
a(n) = F(n+k)*F(n-k) + (-1)^(n+k)*a(k), for every integer k >= 0. - Federico Provvedi, Dec 10 2018
From Peter Bala, Nov 19 2019: (Start)
Sum_{n >= 3} 1/(a(n) - 1/a(n)) = 4/9.
Sum_{n >= 3} (-1)^n/(a(n) - 1/a(n)) = (10 - 3*sqrt(5))/18.
Conjecture: Sum_{n >= 1, n != 2*k+1} 1/(a(n) + (-1)^n*a(2*k+1)) = 1/a(4*k+2) for k = 0,1,2,.... (End)
Sum_{n>=1} 1/a(n) = A105393. - Amiram Eldar, Oct 22 2020
Product_{n>=2} (1 + (-1)^n/a(n)) = phi (A001622) (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A001254 Squares of Lucas numbers.

Original entry on oeis.org

4, 1, 9, 16, 49, 121, 324, 841, 2209, 5776, 15129, 39601, 103684, 271441, 710649, 1860496, 4870849, 12752041, 33385284, 87403801, 228826129, 599074576, 1568397609, 4106118241, 10749957124, 28143753121, 73681302249, 192900153616, 505019158609, 1322157322201, 3461452808004, 9062201101801, 23725150497409
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 36, 60.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001. [Note that Identity 34.7 on page 404 is wrong. - Alonso del Arte, Sep 07 2010]

Crossrefs

With alternating signs, cf. A075150.
Bisection of A001638 and A006499. First differences of A005970.
Second row of array A103324.

Programs

  • Magma
    [ Lucas(n)^2 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    with(combinat):seq(5*fibonacci(n)^2+4*(-1)^n, n=0..26)
  • Mathematica
    Table[LucasL[n]^2, {n, 0, 29}] (* Alonso del Arte, Apr 11 2011 *)
    LinearRecurrence[{2, 2, -1}, {4, 1, 9}, 33] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    a(n)=5*fibonacci(n)^2 + 4*(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(n)**2
    print([a(n) for n in range(33)]) # Michael S. Branicky, Apr 01 2021

Formula

a(n) = A000032(n)^2.
G.f.: ( 4-7*x-x^2 ) / ( (1+x)*(x^2-3*x+1) ). - Len Smiley, Nov 30 2001
From Ralf Stephan, Feb 08 2003: (Start)
a(n) = r^n + (1/r)^n + 2*(-1)^n, with r=(3+sqrt(5))/2.
a(n+3) = 2*a(n+2) + 2*a(n+1) - a(n). (End)
a(n) = L(2*n) + 2*(-1)^n = L(n-1)*L(n+1) + 5(-1)^n.
a(n) = 5*Fibonacci(n)^2 + 4*(-1)^n.
a(n) + a(n+1) = A106729(n). - R. J. Mathar, Nov 17 2011
E.g.f.: 2*exp(-x)*(exp(5*x/2)*cosh(sqrt(5)*x/2)+1). - Wolfdieter Lang, Jan 14 2012
a(n) = 1/4*( a(n-2) - a(n-1) - a(n+1) + a(n+2) ). The same recurrence holds for A007598. - Peter Bala, Aug 18 2015
For n>1, a(n)=(10*F(2*n-1) + 2*L(n-2)*L(n+1))/4 where F(n)=A000045(n), L(n)=A000204(n). - J. M. Bergot, Nov 25 2015
a(n) = (L(n-2)*L(n+2) + L(n-1)*L(n+1))/2 with L(k)=A000032(k). - J. M. Bergot, May 25 2017
From Peter Bala, Nov 13 2019: (Start)
Sum_{n >= 1} 1/a(n) = (1/8)*( theta_3(beta)^4 - 1 ) = A105394, where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97.
Sum_{n >= 1} 1/(a(n) - 5) = (3 - sqrt(5))/6; Sum_{n >= 1} (-1)^n/(a(n) - 5) = (15 - sqrt(5))/30; Sum_{n >= 1} 1/(a(2*n) - 5) = (5 - sqrt(5))/10.
Sum_{n >= 1} 1/(a(n) - 25/a(n)) = 2/9.
Conjecture: Sum_{n >= 1} 1/(a(n) - 5*(-1)^n*F(2*k+1)^2) = 1/(2*a(2*k+1)) for k = 0,1,2,.... (End)
a(n) = 3*a(n-1) - a(n-2) + 10*(-1)^n. - Greg Dresden, May 18 2020

A174968 Decimal expansion of (1 + sqrt(2))/2.

Original entry on oeis.org

1, 2, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

a(n) is the diameter of the circle around the Vitruvian Man when the square has sides of unit length. See illustration in links. - Kival Ngaokrajang, Jan 29 2015
The iterated function z^2 - 1/4, starting from z = 0, gives a pretty good rational approximation of (-1)((1 + sqrt(2))/2 - 1) to more than eight decimal digits after just twenty steps. - Alonso del Arte, Apr 09 2016
This sequence describes the minimum Euclidean length of the optimal solution of the well-known Nine dots puzzle, published in Sam Loyd’s Cyclopedia of puzzles (1914), p. 301 since a valid polygonal chain satisfying the conditions of the above-mentioned problem is (0, 1)-(0, 3)-(3, 0)-(0, 0)-(2, 2), and its total length is equal to 5*(1 + sqrt(2)) = 12.071... (i.e., 10*(1 + sqrt(2))/2). - Marco Ripà, Jul 22 2024

Examples

			1.20710678118654752440084436210484903928483593768847...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A010685 (continued fraction expansion of (1 + sqrt(2))/2), A079291, A249403.
Apart from initial digits the same as A157214 and A010503.

Programs

Formula

Equals Product_{k>=2} (1 + (-1)^k/A079291(k)). - Amiram Eldar, Dec 03 2024

A084158 a(n) = A000129(n) * A000129(n+1)/2.

Original entry on oeis.org

0, 1, 5, 30, 174, 1015, 5915, 34476, 200940, 1171165, 6826049, 39785130, 231884730, 1351523251, 7877254775, 45912005400, 267594777624, 1559656660345, 9090345184445, 52982414446326, 308804141493510, 1799842434514735, 10490250465594899, 61141660359054660, 356359711688733060
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

May be called Pell triangles.

Crossrefs

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Maple
    with(combinat): a:=n->fibonacci(n,2)*fibonacci(n-1,2)/2: seq(a(n), n=1..22); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{5,5,-1},{0,1,5},30] (* Harvey P. Dale, Sep 07 2011 *)
  • PARI
    Pell(n)=([2, 1; 1, 0]^n)[2, 1];
    a(n)=Pell(n)*Pell(n+1)/2 \\ Charles R Greathouse IV, Mar 21 2016
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,5,5]^n*[0;1;5])[1,1] \\ Charles R Greathouse IV, Mar 21 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/16 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/16.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Mohamed Bouhamida, Sep 02 2006; corrected by Antonio Alberto Olivares, Mar 29 2008
a(n) = (-1/8)*(-1)^n + (( sqrt(2)+1)/16)*(3+2*sqrt(2))^n + ((-sqrt(2)+1)/16)*(3-2*sqrt(2))^n. - Antonio Alberto Olivares, Mar 30 2008
sqrt(a(n) - a(n-1)) = A000129(n). - Antonio Alberto Olivares, Mar 30 2008
O.g.f.: x/((1+x)(1-6*x+x^2)). - R. J. Mathar, May 18 2008
a(n) = A041011(n)*A041011(n+1). - R. K. Guy, May 18 2008
From Mohamed Bouhamida, Aug 30 2008: (Start)
a(n) = 6*a(n-1) - a(n-2) - (-1)^n.
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3) - 2*(-1)^n. (End)
In general, for n>k+1, a(n+k) = A003499(k+1)*a(n-1) - a(n-k-2) - (-1)^n A000129(k+1)^2. - Charlie Marion, Jan 04 2012
For n>0, a(2n-1)*a(2n+1) = oblong(a(2n)); a(2n)*a(2n+2) = oblong(a(2n+1)-1). - Charlie Marion, Jan 09 2012
a(n) = A046729(n)/4. - Wolfdieter Lang, Mar 07 2012
a(n) = sum of squares of first n Pell numbers A000129 (A079291). - N. J. A. Sloane, Jun 18 2012
a(n) = (A002315(n) - (-1)^n)/8. - Adam Mohamed, Sep 05 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Dec 02 2024
G.f.: x * exp( Sum_{k>=1} Pell(3*k)/Pell(k) * x^k/k ). - Seiichi Manyama, May 07 2025

A090390 Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.

Original entry on oeis.org

1, 1, 9, 49, 289, 1681, 9801, 57121, 332929, 1940449, 11309769, 65918161, 384199201, 2239277041, 13051463049, 76069501249, 443365544449, 2584123765441, 15061377048201, 87784138523761, 511643454094369, 2982076586042449, 17380816062160329, 101302819786919521, 590436102659356801
Offset: 0

Views

Author

Vim Wenders, Jan 30 2004

Keywords

Comments

The values of a and b in (a,b,c)*A give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1; the values of c are A000129(2n)
Binomial transform of A086348. - Johannes W. Meijer, Aug 01 2010
All values of a(n) are squares. sqrt(a(n+1)) = A001333(n). The ratio a(n+1)/a(n) converges to 3 + 2*sqrt(2). - Richard R. Forberg, Aug 14 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Programs

  • Haskell
    a090390 n = a090390_list !! n
    a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $
       tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list
    -- Reinhard Zumkeller, Aug 17 2013
    
  • Magma
    [Evaluate(DicksonFirst(n,-1),2)^2/4: n in [0..40]]; // G. C. Greubel, Aug 21 2022
    
  • Maple
    a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 17 2013
  • Mathematica
    CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)),{x, 0, 30}], x] (* Harvey P. Dale, May 20 2012 *)
    LinearRecurrence[{5,5,-1}, {1,1,9}, 30] (* Harvey P. Dale, May 20 2012 *)
    Table[(ChebyshevT[n,3]+(-1)^n)/2, {n,0,30}] (* Eric W. Weisstein, Apr 17 2018 *)
    (LucasL[Range[0, 40], 2]/2)^2 (* G. C. Greubel, Aug 21 2022 *)
  • PARI
    a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n),n)
    
  • PARI
    a(n)=if(n<0,0,([1,2,2;2,1,2;2,2,3]^n)[1,1])
    
  • PARI
    Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
    
  • Perl
    use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20;$i++) { $p = $p->multiply($a); $p->print(); }
    
  • SageMath
    [lucas_number2(n,2,-1)^2/4 for n in (0..40)] # G. C. Greubel, Aug 21 2022

Formula

G.f.: (1-4*x-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2
(a, b, c) = (1, 0, 0). Recursively multiply (a, b, c)*( [1, 2, 2], [2, 1, 2], [2, 2, 3] ).
M^n * [ 1 1 1] = [a(n+1) q a(n)], where M = the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. E.g. M^5 * [1 1 1] = [9801 4059 1681] where 9801 = a(6), 1681 = a(5). Similarly, M^n * [1 0 0] generates A079291 (Pell number squares). - Gary W. Adamson, Oct 31 2004
a(n) = (((1+sqrt(2))^(2*n) + (1-sqrt(2))^(2*n)) + 2*(-1)^n)/4 - Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 09 2005
a(n) = (A001541(n) + (-1)^n)/2. - R. J. Mathar, Nov 20 2009
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), with a(0)=1, a(1)=1, a(2)=9. - Harvey P. Dale, May 20 2012
(a(n)) = tesseq(- .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e), apart from initial term. - Creighton Dement, Nov 16 2004
a(n) = A302946(n)/4. - Eric W. Weisstein, Apr 17 2018
E.g.f.: exp(-x)*(1 + exp(4*x)*cosh(2*sqrt(2)*x))/2. - Stefano Spezia, Aug 03 2024

A084703 Squares k such that 2*k+1 is also a square.

Original entry on oeis.org

0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
Offset: 0

Views

Author

Amarnath Murthy, Jun 08 2003

Keywords

Comments

With the exception of 0, a subsequence of A075114. - R. J. Mathar, Dec 15 2008
Consequently, A014105(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
From M. F. Hasler, Jan 17 2012: (Start)
Bisection of A079291. The squares 2*k+1 are given in A055792.
A204576 is this sequence written in binary. (End)
a(n+1), n >= 0, is the perimeter squared (x(n) + y(n) + z(n))^2 of the ordered primitive Pythagorean triple (x(n), y(n) = x(n) + 1, z(n)). The first two terms are (x(0)=0, y(0)=1, z(0)=1), a(1) = 2^2, and (x(1)=3, y(1)=4, z(1)=5), a(2) = 12^2. - George F. Johnson, Nov 02 2012

Crossrefs

Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: this sequence (k=-1), A076218 (k=3), A278310 (k=-5).

Programs

  • Magma
    [4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *)
    a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}]
    4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 4*A001110(n) = A001542(n)^2.
a(n+1) = A001652(n)*A001652(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2. - Charlie Marion, Jul 01 2003
a(n) = A001653(k+n)*A001653(k-n) - A001653(k)^2, for k >= n >= 0; e.g. 144 = 5741*5 - 169^2. - Charlie Marion, Jul 16 2003
G.f.: 4*x*(1+x)/((1-x)*(1-34*x+x^2)). - R. J. Mathar, Dec 15 2008
a(n) = A079291(2n). - M. F. Hasler, Jan 16 2012
From George F. Johnson, Nov 02 2012: (Start)
a(n) = ((17+12*sqrt(2))^n + (17-12*sqrt(2))^n - 2)/8.
a(n+1) = 17*a(n) + 4 + 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1) = 17*a(n) + 4 - 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1)*a(n+1) = (a(n) - 4)^2.
2*a(n) + 1 = (A001541(n))^2.
a(n+1) = 34*a(n) - a(n-1) + 8 for n>1, a(0)=0, a(1)=4.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2) for n>0, a(0)=0, a(1)=4, a(2)=144.
a(n)*a(n+1) = (4*A029549(n))^2.
a(n+1) - a(n) = 4*A046176(n).
a(n) + a(n+1) = 4*(6*A029549(n) + 1).
a(n) = (2*A001333(n)*A000129(n))^2.
Limit_{n -> infinity} a(n)/a(n-r) = (17+12*sqrt(2))^r. (End)
Empirical: a(n) = A089928(4*n-2), for n > 0. - Alex Ratushnyak, Apr 12 2013
a(n) = 4*A001109(n)^2. - G. C. Greubel, Aug 18 2022
Product_{n>=2} (1 - 4/a(n)) = sqrt(2)/3 + 1/2 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025

Extensions

Edited and extended by Robert G. Wilson v, Jun 15 2003

A086346 On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.

Original entry on oeis.org

1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given corner square m (m = 1, 3, 7, 9). To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the king's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
Inverse binomial transform of A079291 (without the leading 0).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array counting king walks on an n X n board with k steps, starting from a corner:
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...;
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, ...;
1, 3, 18, 105, 615, 3600, 21075, 123375, 722250, 4228125, 24751875, ...;
1, 3, 18, 105, 684, 4359, 28278, 182349, 1179792, 7622667, 49283802, ...;
1, 3, 18, 105, 684, 4550, 30807, 209867, 1434279, 9815190, 67209723, ...;
1, 3, 18, 105, 684, 4550, 31340, 218056, 1533712, 10829360, 76720288, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1559835, 11177190, 80573373, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11259785, 81765550, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82025163, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
The partial sums along the rows are documented in A123109 (king walks with between 1 and k steps). (End)

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]

Crossrefs

Programs

  • Magma
    [2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    with(LinearAlgebra):
    nmax:=19; m:=1;
    A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
    A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
    for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
    LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
  • SageMath
    [2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
    

Formula

a(n) = (1/32)*(2*(-2)^(n+2) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3).
G.f.: (1+x) / ( (1+2*x)*(1-4*x-4*x^2) ).
a(n) = (2*A057087(n-1) + 3*A057087(n) + (-2)^n)/4. (End)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
a(n) = A110048(n) + A110048(n-1). - R. J. Mathar, Mar 08 2021
a(n) = 2^(n-3)*(A002203(n+2) + 2*(-1)^n). - G. C. Greubel, Aug 18 2022

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010
Showing 1-10 of 26 results. Next