cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 198 results. Next

A211540 Number of ordered triples (w,x,y) with all terms in {1..n} and 2w = 3x + 4y.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Also the number of partitions of n+1 into three parts, where each part > 1. - Peter Woodward, May 25 2015
a(n) is also equal to the number of partitions of n+4 into three distinct parts, where each part > 1. - Giovanni Resta, May 26 2015
Number of different distributions of n+1 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Dec 31 2015
After the first three terms, partial sums of A008615. - Robert Israel, Dec 31 2015
For n >= 2, also the number of partitions of n - 2 into 3 parts. The Heinz numbers of these partitions are given by A014612. - Gus Wiseman, Oct 11 2020

Examples

			a(5) = a(6) = 1 with only one ordered triple (5,2,1). - _Michael Somos_, Feb 02 2015
a(11) = 5 Number of different distributions of 11 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015
a(1) = a(2) = a(3) = a(4) = a(5) = 0, since with fewer than 6 identical balls there is no such distribution with 3 boxes that holds for 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015
G.f.: x^5 + x^6 + 2*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + 7*x^11 + 8*x^12 + ...
From _Gus Wiseman_, Oct 11 2020: (Start)
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three parts > 1 [Woodward] are the following (A = 10, B = 11, C = 12). The ordered version is A000217(n - 4) and the Heinz numbers are A046316.
  222  322  332  333  433  443  444  544  554  555  655
            422  432  442  533  543  553  644  654  664
                 522  532  542  552  643  653  663  754
                      622  632  633  652  662  744  763
                           722  642  733  743  753  772
                                732  742  752  762  844
                                822  832  833  843  853
                                     922  842  852  862
                                          932  933  943
                                          A22  942  952
                                               A32  A33
                                               B22  A42
                                                    B32
                                                    C22
The a(5) = 1 through a(15) = 14 partitions of n + 4 into three distinct parts > 1 [Resta] are the following (A = 10, B = 11, C = 12, D = 13, E = 14). The ordered version is A211540*6 and the Heinz numbers are A046389.
  432  532  542  543  643  653  654  754  764  765  865
            632  642  652  743  753  763  854  864  874
                 732  742  752  762  853  863  873  964
                      832  842  843  862  872  954  973
                           932  852  943  953  963  982
                                942  952  962  972  A54
                                A32  A42  A43  A53  A63
                                     B32  A52  A62  A72
                                          B42  B43  B53
                                          C32  B52  B62
                                               C42  C43
                                               D32  C52
                                                    D42
                                                    E32
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three distinct parts [Uslu and Becenen] are the following (A = 10, B = 11, C = 12, D = 13). The ordered version is A211540(n)*6 and the Heinz numbers are A007304.
  321  421  431  432  532  542  543  643  653  654  754
            521  531  541  632  642  652  743  753  763
                 621  631  641  651  742  752  762  853
                      721  731  732  751  761  843  862
                           821  741  832  842  852  871
                                831  841  851  861  943
                                921  931  932  942  952
                                     A21  941  951  961
                                          A31  A32  A42
                                          B21  A41  A51
                                               B31  B32
                                               C21  B41
                                                    C31
                                                    D21
(End)
		

Crossrefs

All of the following pertain to 3-part strict partitions.
- A000009 counts these partitions of any length, with non-strict version A000041.
- A007304 gives the Heinz numbers, with non-strict version A014612.
- A101271 counts the relatively prime case, with non-strict version A023023.
- A220377 counts the pairwise coprime case, with non-strict version A307719.
- A337605 counts the pairwise non-coprime case, with non-strict version A337599.

Programs

  • Magma
    I:=[0,0,0,0,0,1]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6),seq(a(i)=0,i=0..4),a(5)=1},a(n),remember):
    seq(f(i),i=0..100); # Robert Israel, Dec 31 2015
  • Mathematica
    t[n_] := t[n] = Flatten[Table[-2 w + 3 x + 4 y, {w, n}, {x, n}, {y, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 80}]  (* A211540 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[Length[Select[IntegerPartitions[n+1,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = round( (n-2)^2 / 12 )}; / * Michael Somos, Feb 02 2015 */
    
  • PARI
    concat(vector(5), Vec(x^5/(1-x-x^2+x^4+x^5-x^6) + O(x^100))) \\ Altug Alkan, Jan 10 2016

Formula

a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = A069905(n-2) = A001399(n-5) for n >= 5. - Alois P. Heinz, Nov 03 2012
a(n) = 3*k^2-6*k+3 (for n = 6*k-3), 3*k^2-5*k+2 (for n = 6*k-2), 3*k^2-4*k+1 (for n = 6*k-1), 3*k^2-3*k+1 (for n = 6*k), 3*k^2-2*k (for n = 6*k+1), 3*k^2-k (for n = 6*k+2). - Ece Uslu, Esin Becenen, Dec 31 2015
a(n) = A004526(n-2) + a(n-2) for n > 2. - Ece Uslu, Esin Becenen, Dec 31 2015
G.f.: x^5/(1 - x - x^2 + x^4 + x^5 - x^6). - Robert Israel, Dec 31 2015
a(n) = Sum_{k=1..floor(n/3)} floor((n-k)/2)-k. - Wesley Ivan Hurt, Apr 27 2019
From Gus Wiseman, Oct 11 2020: (Start)
a(n+2) = A069905(n) = A001399(n-3) counts 3-part partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part strict partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part partitions with no 1's.
a(n-4) = A069905(n-6) = A001399(n-9) counts 3-part strict partitions with no 1's.
A000217(n-2) counts 3-part compositions.
a(n-1)*6 = A069905(n-3)*6 = A001399(n-6)*6 counts 3-part strict compositions.
A000217(n-5) counts 3-part compositions with no 1's.
a(n-4)*6 = A069905(n-6)*6 = A001399(n-9)*6 counts 3-part strict compositions with no 1's.
(End)

A284825 Number of partitions of n into 3 parts without common divisors such that every pair of them has common divisors.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 5, 0, 0, 0, 1, 0, 5, 0, 1, 0, 6, 0, 6, 0, 0, 0, 4, 0, 6, 0, 0, 0, 9, 0, 2, 1, 2, 0, 9, 0, 8, 1, 1, 0, 5, 0, 14, 0, 1, 0, 15, 0, 14, 0, 0, 1, 14, 0, 14, 0, 2, 0, 15, 0, 6, 1, 2, 1, 11, 0, 18, 1, 1, 0, 10, 0, 23
Offset: 31

Views

Author

Alois P. Heinz, Apr 03 2017

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A014612 (triples), A289509 (relatively prime), and A337694 (pairwise non-coprime). - Gus Wiseman, Oct 16 2020

Examples

			a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(41) = 2: [6,14,21], [6,15,20].
From _Gus Wiseman_, Oct 14 2020: (Start)
Selected terms and the corresponding triples:
  a(31)=1: a(41)=2: a(59)=3:  a(77)=4:  a(61)=5:  a(71)=6:
-------------------------------------------------------------
  15,10,6  20,15,6  24,20,15  39,26,12  33,22,6   39,26,6
           21,14,6  24,21,14  42,20,15  40,15,6   45,20,6
                    35,14,10  45,20,12  45,10,6   50,15,6
                              50,15,12  28,21,12  35,21,15
                                        36,15,10  36,20,15
                                                  36,21,14
(End)
		

Crossrefs

A023023 does not require pairwise non-coprimality, with strict case A101271.
A202425 and A328672 count these partitions of any length, ranked by A328868.
A284825*6 is the ordered version.
A307719 is the pairwise coprime instead of non-coprime version.
A337599 does not require relatively primality, with strict case A337605.
A200976 and A328673 count pairwise non-coprime partitions.
A289509 gives Heinz numbers of relatively prime partitions.
A327516 counts pairwise coprime partitions, ranked by A333227.
A337694 gives Heinz numbers of pairwise non-coprime partitions.

Programs

  • Maple
    a:= proc(n) option remember; add(add(`if`(igcd(i, j)>1
          and igcd(i, j, n-i-j)=1 and igcd(i, n-i-j)>1 and
          igcd(j, n-i-j)>1, 1, 0), j=i..(n-i)/2), i=2..n/3)
        end:
    seq(a(n), n=31..137);
  • Mathematica
    a[n_] := a[n] = Sum[Sum[If[GCD[i, j] > 1 && GCD[i, j, n - i - j] == 1 && GCD[i, n - i - j] > 1 && GCD[j, n - i - j] > 1, 1, 0], {j, i, (n - i)/2} ], {i, 2, n/3}];
    Table[a[n], {n, 31, 137}] (* Jean-François Alcover, Jun 13 2018, from Maple *)
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&&stabQ[#,CoprimeQ]&]],{n,31,100}] (* Gus Wiseman, Oct 14 2020 *)

Formula

a(n) > 0 iff n in { A230035 }.
a(n) = 0 iff n in { A230034 }.

A344296 Numbers with at least as many prime factors (counted with multiplicity) as half their sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 280, 288, 300, 320, 324, 336, 352
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of certain partitions counted by A025065, but different from palindromic partitions, which have Heinz numbers A265640.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            30: {1,2,3}
      2: {1}           32: {1,1,1,1,1}
      3: {2}           36: {1,1,2,2}
      4: {1,1}         40: {1,1,1,3}
      6: {1,2}         48: {1,1,1,1,2}
      8: {1,1,1}       54: {1,2,2,2}
      9: {2,2}         56: {1,1,1,4}
     10: {1,3}         60: {1,1,2,3}
     12: {1,1,2}       64: {1,1,1,1,1,1}
     16: {1,1,1,1}     72: {1,1,1,2,2}
     18: {1,2,2}       80: {1,1,1,1,3}
     20: {1,1,3}       81: {2,2,2,2}
     24: {1,1,1,2}     84: {1,1,2,4}
     27: {2,2,2}       88: {1,1,1,5}
     28: {1,1,4}       90: {1,2,2,3}
		

Crossrefs

The case with difference at least 1 is A322136.
The case of equality is A340387, counted by A000041 or A035363.
The opposite version is A344291, counted by A110618.
The conjugate version is A344414, with even-weight case A344416.
A025065 counts palindromic partitions, ranked by A265640.
A056239 adds up prime indices, row sums of A112798.
A300061 lists numbers whose sum of prime indices is even.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) <= 2*A001222(a(n)).
a(n) = A322136(n)/4.

A140106 Number of noncongruent diagonals in a regular n-gon.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37
Offset: 1

Views

Author

Andrew McFarland, Jun 03 2008

Keywords

Comments

Number of double-stars (diameter 3 trees) with n nodes. For n >= 3, number of partitions of n-2 into two parts. - Washington Bomfim, Feb 12 2011
Number of roots of the n-th Bernoulli polynomial in the left half-plane. - Michel Lagneau, Nov 08 2012
From Gus Wiseman, Oct 17 2020: (Start)
Also the number of 3-part non-strict integer partitions of n - 1. The Heinz numbers of these partitions are given by A285508. The version for partitions of any length is A047967, with Heinz numbers A013929. The a(4) = 1 through a(15) = 6 partitions are (A = 10, B = 11, C = 12):
111 211 221 222 322 332 333 433 443 444 544 554
311 411 331 422 441 442 533 552 553 644
511 611 522 622 551 633 661 662
711 811 722 822 733 833
911 A11 922 A22
B11 C11
(End)

Examples

			The square (n=4) has two congruent diagonals; so a(4)=1. The regular pentagon also has congruent diagonals; so a(5)=1. Among all the diagonals in a regular hexagon, there are two noncongruent ones; hence a(6)=2, etc.
		

Crossrefs

A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
Essentially the same as A004526.

Programs

  • Magma
    A140106:= func< n | n eq 1 select 0 else Floor((n-2)/2) >;
    [A140106(n): n in [1..80]]; // G. C. Greubel, Feb 10 2023
    
  • Maple
    with(numtheory): for n from 1 to 80 do:it:=0:
    y:=[fsolve(bernoulli(n,x) , x, complex)] : for m from 1 to nops(y) do : if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `,it):od:
  • Mathematica
    a[1]=0; a[n_?OddQ] := (n-3)/2; a[n_] := n/2-1; Array[a, 100] (* Jean-François Alcover, Nov 17 2015 *)
  • PARI
    a(n)=if(n>1,n\2-1,0) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A140106(n): return n-2>>1 if n>1 else 0 # Chai Wah Wu, Sep 18 2023
  • SageMath
    def A140106(n): return 0 if (n==1) else (n-2)//2
    [A140106(n) for n in range(1,81)] # G. C. Greubel, Feb 10 2023
    

Formula

a(n) = floor((n-2)/2), for n > 1, otherwise 0. - Washington Bomfim, Feb 12 2011
G.f.: x^4/(1-x-x^2+x^3). - Colin Barker, Jan 31 2012
a(n) = floor(A129194(n-1)/A022998(n)), for n > 1. - Paul Curtz, Jul 23 2017
a(n) = A001399(n-3) - A001399(n-6). Compare to A007997(n) = A001399(n-3) + A001399(n-6). - Gus Wiseman, Oct 17 2020

Extensions

More terms from Joseph Myers, Sep 05 2009

A023023 Number of partitions of n into 3 unordered relatively prime parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 8, 14, 12, 16, 16, 24, 18, 30, 24, 32, 30, 44, 32, 50, 42, 54, 48, 70, 48, 80, 64, 80, 72, 96, 72, 114, 90, 112, 96, 140, 96, 154, 120, 144, 132, 184, 128, 196, 150, 192, 168, 234, 162, 240, 192, 240, 210, 290, 192, 310, 240, 288, 256, 336, 240, 374
Offset: 3

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 08 2020: (Start)
The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):
  111   211   221   321   322   332   432   433   443   543   544
              311   411   331   431   441   532   533   552   553
                          421   521   522   541   542   651   643
                          511   611   531   631   551   732   652
                                      621   721   632   741   661
                                      711   811   641   831   733
                                                  722   921   742
                                                  731   A11   751
                                                  821         832
                                                  911         841
                                                              922
                                                              931
                                                              A21
                                                              B11
(End)
		

Crossrefs

A000741 is the ordered version.
A000837 counts these partitions of any length.
A001399(n-3) does not require relative primality.
A023022 is the 2-part version.
A101271 is the strict case.
A284825 counts the case that is also pairwise non-coprime.
A289509 intersected with A014612 gives the Heinz numbers.
A307719 is the pairwise coprime instead of relatively prime version.
A337599 is the pairwise non-coprime instead of relative prime version.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&]],{n,3,50}] (* Gus Wiseman, Oct 08 2020 *)

Formula

G.f. for the number of partitions of n into m unordered relatively prime parts is Sum(moebius(k)*x^(m*k)/Product(1-x^(i*k), i=1..m), k=1..infinity). - Vladeta Jovovic, Dec 21 2004
a(n) = (n^2/12)*Product_{prime p|n} (1 - 1/p^2) = A007434(n)/12 for n > 3 (proved by Mohamed El Bachraoui). [Jonathan Sondow, May 27 2009]
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} floor(1/gcd(i,k,n-i-k)). - Wesley Ivan Hurt, Jan 02 2021

A101271 Number of partitions of n into 3 distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6

Views

Author

Vladeta Jovovic, Dec 19 2004

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A289509 (relatively prime), A005117 (strict), and A014612 (triple). - Gus Wiseman, Oct 15 2020

Examples

			For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 13 2020: (Start)
The a(6) = 1 through a(18) = 15 triples (A..F = 10..15):
  321  421  431  432  532  542  543  643  653  654  754  764  765
            521  531  541  632  651  652  743  753  763  854  873
                 621  631  641  732  742  752  762  853  863  954
                      721  731  741  751  761  843  871  872  972
                           821  831  832  851  852  943  953  981
                                921  841  932  861  952  962  A53
                                     931  941  942  961  971  A71
                                     A21  A31  951  A51  A43  B43
                                          B21  A32  B32  A52  B52
                                               A41  B41  A61  B61
                                               B31  C31  B42  C51
                                               C21  D21  B51  D32
                                                         C32  D41
                                                         C41  E31
                                                         D31  F21
                                                         E21
(End)
		

Crossrefs

A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A078374 counts these partitions of any length, with Heinz numbers A302796.
A101271*6 is the ordered version.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Maple
    m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)

Formula

G.f. for the number of partitions of n into m distinct and relatively prime parts is Sum(moebius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k), i=1..m), k=1..infinity).

Extensions

More terms from Emeric Deutsch, May 31 2005

A117485 Expansion of x^9/((1-x)*(1-x^2)*(1-x^3))^2.

Original entry on oeis.org

1, 2, 5, 10, 18, 30, 49, 74, 110, 158, 221, 302, 407, 536, 698, 896, 1136, 1424, 1770, 2176, 2656, 3216, 3866, 4616, 5481, 6466, 7591, 8866, 10306, 11926, 13747, 15778, 18046, 20566, 23359, 26446, 29855, 33600, 37716, 42224, 47152, 52528, 58388, 64752, 71664
Offset: 9

Views

Author

Alford Arnold, Mar 22 2006

Keywords

Comments

Molien series for S_3 X S_3, cf. A001399.
From Gus Wiseman, Apr 06 2019: (Start)
Also the number of integer partitions of n with Durfee square of length 3. The Heinz numbers of these partitions are given by A307386. For example, the a(9) = 1 through a(13) = 18 partitions are:
(333) (433) (443) (444) (544)
(3331) (533) (543) (553)
(3332) (633) (643)
(4331) (3333) (733)
(33311) (4332) (4333)
(4431) (4432)
(5331) (4441)
(33321) (5332)
(43311) (5431)
(333111) (6331)
(33322)
(33331)
(43321)
(44311)
(53311)
(333211)
(433111)
(3331111)
(End)

Examples

			As a cross-check, row sixteen of A115994 yields p(16) = 16 + 140 + 74 + 1.
		

Crossrefs

Column k=3 of A115994.
Cf. A000027 (for k=1), A006918 (for k=2), A117488, A117489, A001399, A117486.

Programs

  • Magma
    n:=3; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // N. J. A. Sloane, Mar 10 2007
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=3, stack): seq(count(subs(r=3, ZL), size=m), m=6..50) ; # Zerinvary Lajos, Jan 02 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3))^2,{x,0,50}],x] (* Harvey P. Dale, Oct 09 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==3&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    Vec(x^9 / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Dec 12 2019
    
  • PARI
    a(n) = floor((3*n^5 - 45*n^4 + 200*n^3 - 180*n^2 - 363*n + 1600)/12960 + n/27*(n%3==0) - n/32*(n%2==0)) \\ Hoang Xuan Thanh, Jul 17 2025

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>20. - Colin Barker, Dec 12 2019
From Hoang Xuan Thanh, May 17 2025: (Start)
a(n+3) = Sum_{x+2*y+3*z=n} x*y*z.
a(n+3) = n*(n^2-1)*(3*n^2-67)/12960 - floor((n+1)/3)/27 + [n mod 2 = 0]*n/32 + [n mod 3 = 0]*n/27 where [] is the Iverson bracket. (End)

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2007

A337605 Number of unordered triples of distinct positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 4, 1, 5, 0, 9, 0, 8, 3, 10, 0, 17, 1, 14, 5, 16, 1, 25, 1, 21, 8, 26, 2, 37, 1, 30, 15, 33, 2, 49, 2, 44, 16, 44, 2, 64, 6, 54, 21, 56, 3, 87, 5, 65, 30, 70, 9, 101, 5, 80, 34, 98, 6, 121, 6, 96, 52
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(n) triples for n = 12, 16, 18, 22, 27, 55:
  (6,4,2)  (8,6,2)   (8,6,4)   (10,8,4)  (12,9,6)  (28,21,6)
           (10,4,2)  (9,6,3)   (12,6,4)  (15,9,3)  (30,20,5)
                     (10,6,2)  (12,8,2)  (18,6,3)  (35,15,5)
                     (12,4,2)  (14,6,2)            (40,10,5)
                               (16,4,2)            (25,20,10)
                                                   (30,15,10)
		

Crossrefs

A014612 intersected with A318719 ranks these partitions.
A220377 is the coprime instead of non-coprime version.
A318717 counts these partitions of any length, ranked by A318719.
A337599 is the non-strict version.
A337604 is the ordered non-strict version.
A337605*6 is the ordered version.
A023023 counts relatively prime 3-part partitions
A051424 counts pairwise coprime or singleton partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A307719 counts pairwise coprime 3-part partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,100}]

A008642 Quarter-squares repeated.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 12, 12, 16, 16, 20, 20, 25, 25, 30, 30, 36, 36, 42, 42, 49, 49, 56, 56, 64, 64, 72, 72, 81, 81, 90, 90, 100, 100, 110, 110, 121, 121, 132, 132, 144, 144, 156, 156, 169, 169, 182, 182, 196, 196, 210, 210, 225, 225
Offset: 0

Views

Author

Keywords

Comments

The area of the largest rectangle whose perimeter is not greater than n. - Dmitry Kamenetsky, Aug 30 2006
Also number of partitions of n into parts 1, 2 or 4. - Reinhard Zumkeller, Aug 12 2011
Let us consider a rectangle composed of unit squares. Then count how many squares are necessary to surround this rectangle by a layer whose width is 1 unit. And repeat this surrounding ad libitum. This sequence, prepended by 4 zeros and with offset 0, gives the number of rectangles that need 2*n unit squares in one of their surrounding layers. - Michel Marcus, Sep 19 2015
a(n) is the number of nonnegative integer solutions (x,y,z) for n-2 <= 2*x + 3*y + 4*z <= n. For example, the two solutions for 1 <= 2*x + 3*y + 4*z <= 3 are (1,0,0) and (0,1,0). - Ran Pan, Oct 07 2015
Conjecture: Consider the number of compositions of n>=4*k+8 into odd parts, where the order of the parts 1,3,..,2k+1 does not count. Then, as k approaches infinity, a(n-4*k-8) is equal to the number of these restricted compositions minus A000009(n), the number of strict partitions of n. - Gregory L. Simay, Aug 12 2016
From Gus Wiseman, May 17 2019: (Start)
Also the number of length-3 integer partitions of n + 4 whose largest part is greater than the sum of the other two. These are unordered triples that cannot be the sides of a triangle. For example, the a(1) = 1 through a(10) = 9 partitions are (A = 10, B = 11, C = 12):
(311) (411) (421) (521) (522) (622) (632) (732) (733) (833)
(511) (611) (531) (631) (641) (741) (742) (842)
(621) (721) (722) (822) (751) (851)
(711) (811) (731) (831) (832) (932)
(821) (921) (841) (941)
(911) (A11) (922) (A22)
(931) (A31)
(A21) (B21)
(B11) (C11)
(End)
This sequence, prepended by four 0's and with offset 0, is the number of partitions of n into four parts whose smallest two parts are equal. - Wesley Ivan Hurt, Jan 05 2021
This sequence, prepended by four 0's and with offset 0, is the number of incongruent obtuse triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 27 2022

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 112, D(n).

Crossrefs

Cf. A002620.
Cf. A001399, A005044 (triangles without self-intersections), A069905, A124278, A266223, A325686, A325689, A325690, A325691, A325695.

Programs

  • Magma
    [Floor(((n+1)*((-1)^n+n+6)+9)/16): n in [0..70]]; // Vincenzo Librandi, Apr 02 2014
    
  • Maple
    seq((7/8+(-1)^k/8 + k + k^2/4)$2, k=0..100); # Robert Israel, Oct 08 2015
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 02 2014 *)
    LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,2,2,4,4,6}, 70] (* Harvey P. Dale, Jun 03 2015 *)
    Table[Floor[((n + 1) ((-1)^n + n + 6) + 9)/16], {n, 0, 70}] (* Michael De Vlieger, Aug 14 2016 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^4)) + O(x^70)) \\ Michel Marcus, Mar 31 2014
    
  • PARI
    vector(70, n, n--; floor(((n+1)*((-1)^n+n+6)+9)/16)) \\ Altug Alkan, Oct 08 2015
    
  • Sage
    [floor(floor(n/2+2)^2/2)/2 for n in (0..70)] # Bruno Berselli, Mar 03 2016

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)).
a(n) = (2*n^2 + 14*n + 21 + (2*n + 7)*(-1)^n)/32 + ((1 + (-1)^n)/2 - (1 - (-1)^n)*i/2)*i^n/8, with i = sqrt(-1).
a(n) = floor(((n+1)*((-1)^n+n+6)+9)/16). - Tani Akinari, Jun 16 2013
a(n) = Sum_{i=1..floor((n+6)/2)} floor((n+6-2*i-(n mod 2))/4). - Wesley Ivan Hurt, Mar 31 2014
a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=4, a(6)=6; for n>6, a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7). - Harvey P. Dale, Jun 03 2015
a(n) = floor(floor(n/2+2)^2/4) = floor(floor(n/2+2)^2/2)/2. - Bruno Berselli, Mar 03 2016
E.g.f.: ((14 + 7*x + x^2)*cosh(x) + 2*(cos(x) + sin(x)) + (7 + 9*x + x^2)*sinh(x))/16. - Stefano Spezia, Mar 05 2023
a(n) = floor((n + 4)/4)*floor((n + 6)/4). - Ridouane Oudra, Apr 01 2023

A055290 Triangle of trees with n nodes and k leaves, 2 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 3, 4, 2, 1, 0, 1, 4, 8, 6, 3, 1, 0, 1, 5, 14, 14, 9, 3, 1, 0, 1, 7, 23, 32, 26, 12, 4, 1, 0, 1, 8, 36, 64, 66, 39, 16, 4, 1, 0, 1, 10, 54, 123, 158, 119, 60, 20, 5, 1, 0, 1, 12, 78, 219, 350, 325, 202, 83, 25, 5, 1, 0
Offset: 2

Views

Author

Christian G. Bower, May 09 2000

Keywords

Examples

			Triangle begins:
  n=2:  1
  n=3:  1   0
  n=4:  1   1   0
  n=5:  1   1   1   0
  n=6:  1   2   2   1   0
  n=7:  1   3   4   2   1   0
  n=8:  1   4   8   6   3   1   0
  n=9:  1   5  14  14   9   3   1   0
  n=10: 1   7  23  32  26  12   4   1   0
  n=11: 1   8  36  64  66  39  16   4   1   0
  n=12: 1  10  54 123 158 119  60  20   5   1   0
  n=13: 1  12  78 219 350 325 202  83  25   5   1   0
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 80, Problem 3.9.

Crossrefs

Row sums give A000055, row sums with weight k give A003228.
The labeled version is A055314.
Central column is A358107.
Left of central column is A359398.

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    T(n)={my(u=[y]); for(n=2, n, u=concat([y], EulerMT(u))); my(r=x*Ser(u), v=Vec(r*(1-x+x*y) + (substvec(r,[x,y],[x^2,y^2]) - r^2)/2)); vector(n-1, k, Vecrev(v[1+k]/y^2, k))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

G.f.: A(x, y)=(1-x+x*y)*B(x, y)+(1/2)*(B(x^2, y^2)-B(x, y)^2), where B(x, y) is g.f. of A055277.
Previous Showing 31-40 of 198 results. Next