cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 695 results. Next

A045542 Sub-perfect powers: perfect powers (squares, cubes etc.) minus 1.

Original entry on oeis.org

3, 7, 8, 15, 24, 26, 31, 35, 48, 63, 80, 99, 120, 124, 127, 143, 168, 195, 215, 224, 242, 255, 288, 323, 342, 360, 399, 440, 483, 511, 528, 575, 624, 675, 728, 783, 840, 899, 960, 999, 1023, 1088, 1155, 1224, 1295, 1330, 1368, 1443, 1520, 1599, 1680, 1727
Offset: 1

Views

Author

William M. Glasgow (billg(AT)wakely.com)

Keywords

Comments

Goldbach showed that Sum 1/a(n) = 1, see A214390, A214391.
The only primes in the sequence are 3,7,31,127,... the Mersenne primes (A000668). - Zak Seidov, Dec 08 2011
Repdigits of two or more digits, interpreted in the smallest possible base. E.g., the smallest base for 222 is 3, 222 in base 3 is 26, and 26 is in the sequence. - Franklin T. Adams-Watters, Aug 11 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 66.

Crossrefs

Programs

  • Haskell
    a045542 n = a045542_list !! (n-1)
    a045542_list = map (subtract 1) $ tail a001597_list
    -- Reinhard Zumkeller, Jul 15 2012
    
  • Mathematica
    f[upto_] := Union[Flatten[Table[n^pwr - 1, {pwr, 2, Log[2,upto+1]}, {n, 2, (upto+1)^(1/pwr)}]]]; f[1763] (* Zak Seidov, Dec 08 2011 *)
    Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]-1 (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    list(lim)=my(v=List()); for(e=2,logint(lim\=1,2), for(k=2,sqrtnint(lim,e), listput(v,k^e-1))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015

Formula

a(n) = A001597(n + 1) - 1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A375706 First differences of non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The 5th non-perfect-power is 7, and the 6th is 10, so a(5) = 3.
		

Crossrefs

For prime-powers (A000961) we have A057820.
For perfect powers (A001597) we have A053289.
For nonprime numbers (A002808) we have A073783.
For squarefree numbers (A005117) we have A076259.
First differences of A007916.
For nonsquarefree numbers (A013929) we have A078147.
For non-prime-powers (A024619) we have A375708.
Positions of 1s are A375740, complement A375714.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ]]
  • PARI
    up_to = 112;
    A375706list(up_to) = { my(v=vector(up_to), pk=2, k=2, i=0); while(i<#v, k++; if(!ispower(k), i++; v[i] = k-pk; pk = k)); (v); };
    v375706 = A375706list(up_to);
    A375706(n) = v375706[n]; \\ Antti Karttunen, Jan 19 2025
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A375706(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if not perfect_power(i))-m # Chai Wah Wu, Sep 09 2024
    

Formula

a(n) = A007916(n+1) - A007916(n).

Extensions

More terms from Antti Karttunen, Jan 19 2025

A069623 Number of perfect powers <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(27) = 7 as the perfect powers <= 27 are 1, 4, 8, 9, 16, 25 and 27.
		

Crossrefs

Perfect powers are A001597. Cf. A053289. A076411(n) = a(n-1) is another version.
Cf. A075802 (first differences). - Chayim Lowen, Jul 29 2015
Cf. A002321.

Programs

  • Maple
    N:= 1000:  # to get a(n) for n <= N
    R:= Vector(N):
    for p from 2 to ilog2(N) do
      for i from 1 to floor(N^(1/p)) do
          R[i^p]:= 1
    od od:
    A069623:= map(round,Statistics:-CumulativeSum(R)):
    convert(A069623,list); # Robert Israel, May 19 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1, a(n-1)+
         `if`(igcd(seq(i[2], i=ifactors(n)[2]))>1, 1, 0))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 26 2019
  • Mathematica
    a[1] = 1; a[n_] := If[ !PrimeQ[n] && GCD @@ Last[Transpose[FactorInteger[n]]] > 1, a[n - 1] + 1, a[n - 1]]; Table[a[n], {n, 1, 85}]
    (* Or *) b[n_] := n - Sum[ MoebiusMu[k] * Floor[n^(1/k) - 1], {k, 1, Floor[ Log[2, n]]}]; Table[b[n], {n, 1, 85}]
  • PARI
    a(n) = 1 + sum(k=1, n, ispower(k) != 0); \\ Michel Marcus, Jul 25 2015
    
  • PARI
    a(n)=n-sum(k=1,logint(n,2), moebius(k)*(sqrtnint(n,k)-1)) \\ Charles R Greathouse IV, Jul 21 2017
    
  • PARI
    a(n)=my(s=n); forsquarefree(k=1,logint(n,2), s-=(sqrtnint(n,k[1])-1)*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius, integer_nthroot
    def A069623(n): return int(n+sum(mobius(k)*(1-integer_nthroot(n,k)[0]) for k in range(1,n.bit_length()))) # Chai Wah Wu, Aug 13 2024

Formula

a(n) = n - Sum_{k=1..floor(log_2(n))} mu(k)*floor(n^(1/k)-1), where mu = A008683. - David W. Wilson, Oct 09 2002
a(n) = O(sqrt(n)) (conjectured). a(n) = A076411(n+1) = Sum_{k=1..n} A075802(k). - Chayim Lowen, Jul 24 2015
The conjecture is true: The number of squares < n is n^(1/2) + O(1). The number of higher powers < n is nonnegative and less than n^(1/3) log_2(n). Thus a(n) = n^(1/2) + O(n^(1/3) log n). - Robert Israel, Jul 31 2015
a(n) = n - Sum_{k=2..n} M(floor(log_k(n))), where M is Mertens's function A002321. - Ridouane Oudra, Dec 30 2020

A304465 If n is prime, set a(n) = 1. Otherwise, start with the multiset of prime factors of n, and given a multiset take the multiset of its multiplicities. Repeating this until a multiset of size 1 is reached, set a(n) to the unique element of this multiset.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

a(1) = 0 by convention.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 08 2018

Examples

			Starting with the multiset of prime factors of 2520 we have {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}, so a(2520) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,100}]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A304465(n) = if(1==n,0,my(t=isprimepower(n)); if(t,t, t=omega(n); if(bigomega(n)==t),t,A304465(A181819(n)))); \\ Antti Karttunen, Nov 08 2018

Formula

a(p^n) = n where p is any prime number.
a(product of n distinct primes) = n.
a(1) = 0; and for n > 1, if n = prime^k, a(n) = k, otherwise, if n is squarefree [i.e., A001221(n) = A001222(n)], a(n) = A001221(n), otherwise a(n) = a(A181819(n)). - Antti Karttunen, Nov 08 2018

Extensions

More terms from Antti Karttunen, Nov 08 2018

A001570 Numbers k such that k^2 is centered hexagonal.

Original entry on oeis.org

1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1

Views

Author

Keywords

Comments

Chebyshev T-sequence with Diophantine property. - Wolfdieter Lang, Nov 29 2002
a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - Reinhard Zumkeller, Jun 01 2005
Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - Lekraj Beedassy, Jul 21 2006
Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - Alexander Adamchuk, Apr 06 2007
Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - Ctibor O. Zizka, Sep 04 2008
a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - Giacomo Fecondo, Oct 09 2010
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - Max Alekseyev, Mar 15 2015
Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - Jeffrey Shallit, Dec 11 2017
Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - Bernard Schott, Nov 20 2022

Examples

			G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
		

References

  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003500/4. Cf. A006051, A001921, A001922.
One half of odd part of bisection of A001075. First differences of A007655.
Cf. A077417 with companion A077416.
Row 14 of array A094954.
A122571 is another version of the same sequence.
Row 2 of array A188646.
Cf. similar sequences listed in A238379.
Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

Programs

  • Magma
    [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
    f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
      ] (* Complement of A041017 *)
    a[12, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
    CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
    

Formula

a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - Michael Somos, Feb 15 2011
G.f.: x * (1 - x) / (1 -14*x + x^2). - Michael Somos, Feb 15 2011
Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - Benoit Cloitre, Dec 10 2002
a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - Wolfdieter Lang, Nov 29 2002
a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - Max Alekseyev, Jan 23 2022
4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.
a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).
a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - Alexander Adamchuk, Apr 06 2007
a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - Zak Seidov, May 06 2007
a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008
a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).
a(n) = A098301(n+1) - A001353(n)*A001835(n).
a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - Ivan N. Ianakiev, Sep 24 2013
a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - Bernard Schott, Nov 20 2022
a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). Michael Somos, Dec 18 2022
a(n) = A003154(A101265(n)). - Andrea Pinos, Dec 19 2022

A080101 Number of prime powers in all composite numbers between n-th prime and next prime.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

The maximum value of terms in the sequence, through the (10^5)th term, is 2. - Harvey P. Dale, Aug 24 2014
This is conjectured to be the maximum, see also A366833. - Gus Wiseman, Nov 06 2024

Examples

			There are two prime powers between 2179 = A000040(327) and 2203 = A000040(328): 2187 = 3^7 and 2197 = 13^3, therefore a(327) = 2, A080102(327) = 2187 and A080103(327) = 2197.
		

Crossrefs

For powers of 2 instead of primes we have A244508, see also A013597, A014210, A014234, A304521.
Adding one gives A366833.
For non-prime-powers instead of prime-powers we have A368748.
Positions of positive terms are A377057, primes A053607.
Positions of 0 are A377286.
Positions of 1 are A377287.
Positions of 2 are A377288, primes A053706.
For perfect-powers (instead of prime-powers) we have A377432.
A000015 gives the least prime-power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, seconds A376596.
A031218 gives the greatest prime-power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the least prime-power > prime(n), difference A377281.

Programs

  • Maple
    a := proc(n) local c, k, p: c, p := 0, ithprime(n): for k from p+1 to nextprime(p)-1 do if nops(numtheory:-factorset(k)) = 1 then c := c+1: fi: od: c: end:
    seq(a(n), n = 1 .. 105); # Lorenzo Sauras Altuzarra, Jul 08 2022
  • Mathematica
    prpwQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]==1&&fi[[1,2]]>1]; nn=600;With[{pwrs=Table[If[prpwQ[n],1,0],{n,nn}]},Table[Total[ Take[ pwrs,{Prime[n],Prime[n+1]}]],{n,PrimePi[nn]-1}]] (* Harvey P. Dale, Aug 24 2014 *)
    Table[Length[Select[Range[Prime[n]+1,Prime[n+1]-1],PrimePowerQ]],{n,30}] (* Gus Wiseman, Nov 06 2024 *)

Formula

a(n) = A366833(n) - 1. - Gus Wiseman, Nov 06 2024

A089723 a(1)=1; for n>1, a(n) gives number of ways to write n as n = x^y, 2 <= x, 1 <= y.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Naohiro Nomoto, Jan 07 2004

Keywords

Comments

This function depends only on the prime signature of n. - Franklin T. Adams-Watters, Mar 10 2006
a(n) is the number of perfect divisors of n. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) > 1 for perfect powers n = A001597(m) for m > 2. - Jaroslav Krizek, Jan 23 2010
Also the number of uniform perfect integer partitions of n - 1. An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. The Heinz numbers of these partitions are given by A326037. The a(16) = 3 partitions are: (8,4,2,1), (4,4,4,1,1,1), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). - Gus Wiseman, Jun 07 2019
The record values occur at 1 and at 2^A002182(n) for n > 1. - Amiram Eldar, Nov 06 2020

Examples

			144 = 2^4 * 3^2, gcd(4,2) = 2, d(2) = 2, so a(144) = 2. The representations are 144^1 and 12^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:          1, 2, 3, 4, 5, 6, 7, 8, 9, ...
----------------------------------------------------
1st powers: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
Squares:    1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:      1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
Quartics:   1, 0, 0, 0, 0, 0, 0, 0, 0, ... (A374016)
...
Sum:       oo, 1, 1, 2, 1, 1, 1, 2, 2, ...
a(1)=1:     1, 1, 1, 2, 1, 1, 1, 2, 2, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A089723 := proc(n) local t1,t2,g,j;
    if n=1 then 1 else
    t1:=ifactors(n)[2]; t2:=nops(t1); g := t1[1][2];
    for j from 2 to t2 do g:=gcd(g,t1[j][2]); od:
    tau(g); fi; end;
    [seq(A089723(n),n=1..100)]; # N. J. A. Sloane, Nov 10 2016
  • Mathematica
    Table[DivisorSigma[0, GCD @@ FactorInteger[n][[All, 2]]], {n, 100}] (* Gus Wiseman, Jun 12 2017 *)
  • PARI
    a(n) = if (n==1, 1, numdiv(gcd(factor(n)[,2]))); \\ Michel Marcus, Jun 13 2017
    
  • Python
    from math import gcd
    from sympy import factorint, divisor_sigma
    def a(n):
        if n == 1: return 1
        e = list(factorint(n).values())
        g = e[0]
        for ei in e[1:]: g = gcd(g, ei)
        return divisor_sigma(g, 0)
    print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 15 2021

Formula

If n = Product p_i^e_i, a(n) = d(gcd()). - Franklin T. Adams-Watters, Mar 10 2006
Sum_{n=1..m} a(n) = A255165(m) + 1. - Richard R. Forberg, Feb 16 2015
Sum_{n>=2} a(n)/n^s = Sum_{n>=2} 1/(n^s-1) = Sum_{k>=1} (zeta(s*k)-1) for all real s with Re(s) > 1 (Golomb, 1973). - Amiram Eldar, Nov 06 2020
For n > 1, a(n) = Sum_{i=1..floor(n/2)} floor(n^(1/i))-floor((n-1)^(1/i)). - Wesley Ivan Hurt, Dec 08 2020
Sum_{n>=1} (a(n)-1)/n = 1 (Mycielski, 1951). - Amiram Eldar, Jul 15 2021
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = 1 + A259362(n) = 1 + A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
G.f.: x + Sum_{j>=2, k>=1} x^(j^k). (End)

A375708 First differences of non-prime-powers (exclusive, so 1 is not a prime-power).

Original entry on oeis.org

5, 4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2024

Keywords

Comments

Non-prime-powers (exclusive) are listed by A361102.
Warning: For this sequence, 1 is not a prime-power but is a non-prime-power.

Examples

			The 6th non-prime-power (exclusive) is 15, and the 7th is 18, so a(6) = 3.
		

Crossrefs

For prime-powers (A000961, A246655) we have A057820, gaps A093555.
For perfect powers (A001597) we have A053289.
For nonprime numbers (A002808) we have A073783.
For squarefree numbers (A005117) we have A076259.
First differences of A361102, inclusive A024619.
Positions of 1's are A375713.
If 1 is considered a prime power we have A375735.
Runs of non-prime-powers:
- length: A110969
- first: A373676
- last: A373677
- sum: A373678
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.
A013929 lists the nonsquarefree numbers, differences A078147.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    Differences[Select[Range[100],!PrimePowerQ[#]&]]
  • Python
    from itertools import count
    from sympy import primepi, integer_nthroot, primefactors
    def A375708(n):
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if len(primefactors(i))>1)-m # Chai Wah Wu, Sep 09 2024

A216765 Perfect powers (squares, cubes, etc.) plus 1.

Original entry on oeis.org

5, 9, 10, 17, 26, 28, 33, 37, 50, 65, 82, 101, 122, 126, 129, 145, 170, 197, 217, 226, 244, 257, 290, 325, 344, 362, 401, 442, 485, 513, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1001, 1025, 1090, 1157, 1226, 1297, 1332, 1370, 1445, 1522, 1601, 1682, 1729, 1765
Offset: 1

Views

Author

Jonathan Vos Post, Sep 15 2012

Keywords

Comments

Integers of the form m^k + 1 for integers m, k >= 2.

Examples

			a(1) = 2^2 + 1; a(2) = 2^3 + 1; a(3) = 3^2 + 1; a(4) = 2^4 + 1.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6, p. 113.

Crossrefs

Formula

a(n) = A001597(n+1) + 1 = A045542(n) + 2. [corrected by Georg Fischer, Jun 21 2020]
Sum_{n>=1} 1/a(n) = Pi^2/3 - 5/2 (Lev, 2002). - Amiram Eldar, Oct 15 2020

A131605 Perfect powers of nonprimes (m^k where m is a nonprime positive integer and k >= 2).

Original entry on oeis.org

1, 36, 100, 144, 196, 216, 225, 324, 400, 441, 484, 576, 676, 784, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1728, 1764, 1936, 2025, 2116, 2304, 2500, 2601, 2704, 2744, 2916, 3025, 3136, 3249, 3364, 3375, 3600, 3844, 3969, 4225, 4356, 4624
Offset: 1

Views

Author

Daniel Forgues, May 27 2008

Keywords

Comments

Although 1 is a square, is a cube, and so on..., 1 is sometimes excluded from perfect powers since it is not a well-defined power of 1 (1 = 1^k for any k in [2, 3, 4, 5, ...])
From Michael De Vlieger, Aug 11 2025: (Start)
This sequence is A001597 \ A246547, i.e., perfect powers without proper prime powers.
Union of {1} with the intersection of A001597 and A126706, where A126706 is the sequence of numbers that are neither prime powers nor squarefree.
Union of {1} and A286708 \ A052486, i.e., powerful numbers that are not prime powers, without Achilles numbers, but including the empty product. (End)

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^20}, {1}~Join~Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[Length[#2] > 1, GCD @@ #2 > 1] & @@ {#, FactorInteger[#][[;; , -1]]} &] ] (* Michael De Vlieger, Aug 11 2025 *)
  • PARI
    isok(n) = if (n == 1, return (1), return (ispower(n, ,&np) && (! isprime(np)))); \\ Michel Marcus, Jun 12 2013
    
  • Python
    from sympy import mobius, integer_nthroot, primepi
    def A131605(n):
        def f(x): return int(n-2+x+sum(mobius(k)*((a:=integer_nthroot(x,k)[0])-1)+primepi(a) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 1 + A072102 - A136141 = 1.10130769935514973882... . - Amiram Eldar, Aug 15 2025
Previous Showing 91-100 of 695 results. Next