cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 109 results. Next

A320906 T(n, k) = binomial(2*n - k, k - 1)*hypergeom([2, 2, 1 - k], [1, 2*(1 - k + n)], -1), triangle read by rows, T(n,k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 1, 6, 0, 1, 8, 24, 0, 1, 10, 39, 80, 0, 1, 12, 58, 150, 240, 0, 1, 14, 81, 256, 501, 672, 0, 1, 16, 108, 406, 955, 1524, 1792, 0, 1, 18, 139, 608, 1686, 3178, 4339, 4608, 0, 1, 20, 174, 870, 2794, 6144, 9740, 11762, 11520
Offset: 0

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Examples

			Triangle starts:
[0] 0
[1] 0, 1
[2] 0, 1,  6
[3] 0, 1,  8,  24
[4] 0, 1, 10,  39,  80
[5] 0, 1, 12,  58, 150,  240
[6] 0, 1, 14,  81, 256,  501,  672
[7] 0, 1, 16, 108, 406,  955, 1524, 1792
[8] 0, 1, 18, 139, 608, 1686, 3178, 4339,  4608
[9] 0, 1, 20, 174, 870, 2794, 6144, 9740, 11762, 11520
		

Crossrefs

Row sums are A320907. T(n, n) = A001788(n).
Cf. A320905.

Programs

  • Maple
    T := (n, k) -> binomial(2*n-k, k-1)*hypergeom([2, 2, 1-k], [1, 2*(1-k+n)], -1):
    seq(seq(simplify(T(n, k)), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n+1-k, 2*n+2-2*k+j]*Binomial[j+2, 2], {j,0, 2*n+1-k}]; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n}]] (* Detlef Meya, Dec 31 2023 *)
  • PARI
    T(n, k) = {sum(j=0, 2*n+1-k, binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2))} \\ Andrew Howroyd, Dec 31 2023
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k <= 0 or n <= 0: return 0
        if k == 1: return 1
        if k == n: return n * (n + 1) * 2**(n - 2)
        return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2)
    for n in range(10): print([T(n, k) for k in range(n + 1)])
    # after Detlef Meya, Peter Luschny, Jan 01 2024

Formula

T(n, k) = Sum_{j=0..2*n+1-k} binomial(2*n+1-k, 2*n+2-2*k+j) * binomial(j+2,2). - Detlef Meya, Dec 31 2023

A359202 Number of (bidimensional) faces of regular m-polytopes for m >= 3.

Original entry on oeis.org

4, 6, 8, 10, 12, 20, 24, 32, 35, 56, 80, 84, 96, 120, 160, 165, 220, 240, 280, 286, 364, 448, 455, 560, 672, 680, 720, 816, 960, 969, 1140, 1200, 1320, 1330, 1540, 1760, 1771, 1792, 2024, 2288, 2300, 2600, 2912, 2925, 3276, 3640, 3654, 4060, 4480, 4495, 4608
Offset: 1

Views

Author

Marco Ripà, Dec 20 2022

Keywords

Comments

In 3 dimensions there are five (convex) regular polytopes and they have 4, 6, 8, 12, or 20 (bidimensional) faces (A053016).
In 4 dimensions there are six regular 4-polytopes and they have 10, 24, 32, 96, 720, or 1200 faces (A063925).
In m >= 5 dimensions, there are only 3 regular polytopes (i.e., the m-simplex, the m-cube, and the m-crosspolytope) so that we can sort their number of bidimensional faces in ascending order and define the present sequence.

Examples

			6 is a term since a cube has 6 faces.
		

Crossrefs

Cf. A359201 (edges), A359662 (cells).

Formula

{a(n), n >= 1} = {{12, 96, 720, 1200} U {A000292} U {A001788} U {A130809}} \ {0, 1}.

A372868 Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 2, 4, 1, 8, 6, 16, 24, 1, 32, 80, 10, 64, 240, 60, 1, 128, 672, 280, 14, 256, 1792, 1120, 112, 1, 512, 4608, 4032, 672, 18, 1024, 11520, 13440, 3360, 180, 1, 2048, 28160, 42240, 14784, 1320, 22, 4096, 67584, 126720, 59136, 7920, 264, 1, 8192, 159744, 366080, 219648, 41184, 2288, 26
Offset: 1

Views

Author

Stefano Spezia, May 15 2024

Keywords

Comments

With offset 0 for the variable k, T(n,k) is the number of flattened Catalan words of length n with exactly k peaks. In such case, T(4,1) = 6 corresponds to 6 flattened Catalan words of length 4 with 1 peak: 0010, 0100, 0110, 0101, 0120, and 0121. See Baril et al. at page 20.

Examples

			The irregular triangle begins:
    1;
    2;
    4,    1;
    8,    6;
   16,   24,    1;
   32,   80,   10;
   64,  240,   60,   1;
  128,  672,  280,  14;
  256, 1792, 1120, 112, 1;
  ...
T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
		

Crossrefs

Cf. A000079, A001788, A002409, A003472, A007051 (row sums), A110654 (row lengths), A140325, A172242.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}] //Flatten (* or *)
    T[n_,k_]:=2^(n-2k+1)Binomial[n-1,2k-2]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}]

Formula

G.f.: (1-2*x)*x*y/(1 - 4*x + 4*x^2 - x^2*y).
T(n,k) = 2^(n-2*k+1)*binomial(n-1, 2*k-2).
T(n,1) = A000079(n-1).
T(n,2) = A001788(n-2).
T(n,3) = A003472(n-1).
T(n,4) = A002409(n-7).
T(n,5) = A140325(n-9).
T(n,6) = A172242(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).

A381899 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Geoffrey Critzer, Mar 09 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A132186(n).
Sum_{k>=0} T(n,k)*3^k = A053846(n).
Sum_{k>=0} T(n,k)*q^k = the number of idempotent n X n matrices over GF(q).
It appears that if n is even the n-th row converges to 2,0,0,...,21,13,9,5,4,1,1 which is A226622 reversed, and if n is odd the sequence is twice A226635.
From Alois P. Heinz, Mar 09 2025: (Start)
Sum_{k>=0} k * T(n,k) = 3*A001788(n-1) for n>=1.
Sum_{k>=0} (-1)^k * T(n,k) = A060546(n). (End)

Examples

			Triangle T(n,k) begins:
  1;
  2;
  2, 1, 1;
  2, 0, 2, 2, 2;
  2, 0, 0, 2, 3, 3, 4, 1, 1;
  2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
  ...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
		

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
         `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
             expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 09 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^2 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).

A085408 Total number of cycles in the binary n-cube.

Original entry on oeis.org

0, 1, 28, 14704, 51109385408
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 12 2003

Keywords

References

  • Computed by Daniele Degiorgi (danieled(AT)INF.ETHZ.CH).

Crossrefs

Cf. A066037, A001788. Row sums of A085452.

Programs

  • Mathematica
    Table[Total[Table[Length[FindCycle[HypercubeGraph[n], {k}, All]], {k, 4, 2^n, 2}]], {n, 4}] (* Eric W. Weisstein, Mar 24 2020 *)

A102841 a(n) = ((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27.

Original entry on oeis.org

1, 5, 19, 61, 179, 493, 1299, 3309, 8211, 19949, 47635, 112109, 260627, 599533, 1366547, 3089901, 6937107, 15476205, 34331155, 75769325, 166451731, 364127725, 793500179, 1723082221, 3729512979, 8048092653, 17319057939
Offset: 0

Views

Author

Creighton Dement, Feb 27 2005

Keywords

Comments

A floretion-generated sequence relating the number of edges and faces in n-dimensional hypercube.
Equals A001787, (1, 4, 12, 32, 80, ...) convolved with A001045, the Jacobsthal sequence. - Gary W. Adamson, May 23 2009
The sum of the sizes of all inversions in compositions of n. - Arnold Knopfmacher, Jan 22 2020

Crossrefs

Programs

  • Magma
    [((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27 : n in [0..40]]; // Wesley Ivan Hurt, Jul 03 2020
  • Mathematica
    Table[(1/27)*((9 n^2 + 33 n + 26) 2^n + (-1)^n), {n, 0, 50}] (* or *) LinearRecurrence[{5,-6,-4,8}, {1,5,19,61}, 50] (* G. C. Greubel, Sep 27 2017 *)

Formula

G.f.: 1/((1+x)*(1-2*x)^3).
a(n+1) - 2*a(n) = A045883(n+2).
a(n) + a(n+1) = A001788(n+2).
a(n) = 5*a(n-1) - 6*a(n-2) - 4*a(n-3) + 8*a(n-4). - Wesley Ivan Hurt, Jul 03 2020

Extensions

Corrected by T. D. Noe, Nov 08 2006

A130749 Triangle A007318*A090181 (as infinite lower triangular matrices) .

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 24, 10, 1, 1, 31, 80, 60, 15, 1, 1, 63, 240, 280, 125, 21, 1, 1, 127, 672, 1120, 770, 231, 28, 1, 1, 255, 1792, 4032, 3920, 1806, 392, 36, 1, 1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 13 2007

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    6,     1;
  1,  15,   24,    10,     1;
  1,  31,   80,    60,    15,     1;
  1,  63,  240,   280,   125,    21,    1;
  1, 127,  672,  1120,   770,   231,   28,   1;
  1, 255, 1792,  4032,  3920,  1806,  392,  36,  1;
  1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45,  1;
  ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    T1[n_, k_] := Binomial[n, k];
    T2[n_, k_] := Sum[(-1)^(j-k) Binomial[2n-j, j] Binomial[j, k] CatalanNumber[n-j], {j, 0, n}];
    T[n_, k_] := Sum[T1[n, m] T2[m, k], {m, 0, n}];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Maxima
    N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
    T(n, k):=if k=0 then 1 else sum(binomial(n, i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */

Formula

Sum_{k=0..n} T(n,k) = A007317(n+1).
G.f.: 1/(1-x-xy/(1-x/(1-x-xy/(1-x/(1-x-xy/(1-x.... (continued fraction); [Paul Barry, Jan 12 2009]
T(n,k) = Sum_{i=1..n} binomial(n, i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022

A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=7) of 3 objects u,v,z, with repetition allowed, containing n-7 u's. Example: if n=7 then n-7 =(0) zero u, a(1)=128. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 6-dimensional elements in an n-cross polytope where n>=7. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
    seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015

A171631 Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1.

Original entry on oeis.org

1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100
Offset: 1

Views

Author

Roger L. Bagula, Dec 13 2009

Keywords

Comments

If T(0,0) = 0 is prepended, then row sums give A001788.

Examples

			Triangle begins:
n\k|  0    1     2     3     4     6    7    8  9
-------------------------------------------------
1  |  1
2  |  4    2
3  |  9   12     3
4  | 16   36    24     4
5  | 25   80    90    40     5
6  | 36  150   240   180    60     6
7  | 49  252   525   560   315    84    7
8  | 64  392  1008  1400  1120   504  112    8
9  | 81  576  1764  3024  3150  2016  756  144  9
... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten
  • Maxima
    T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$
    tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */

Formula

Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2).
From Franck Maminirina Ramaharo, Oct 02 2018: (Start)
T(n,1) = A000290(n).
T(n,2) = A011379(n).
T(n,3) = 3*A002417(n-2).
T(n,n-2) = A046092(n-1).
T(n,n-3) = 9*A000292(n-2).
G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End)

Extensions

Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012
Previous Showing 91-100 of 109 results. Next