A161198
Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
G(p,-2) = 3 - 8*p + 4*p^2
G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
F(p,0) = 1
F(p,1) = 1 + 2*p
F(p,2) = 3 + 8*p + 4*p^2
F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
[15, -46, 36, -8]
[3, -8, 4]
[1, -2]
[1]
[1, 2]
[3, 8, 4]
[15, 46, 36, 8]
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version,
A039757 is a scaled signed triangle version and
A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2,
A028339 is the third left hand column divided by 4,
A028340 is the fourth left hand column divided by 8,
A028341 is the fifth left hand column divided by 16.
-
nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6); # Peter Luschny, May 09 2013
-
nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
-
for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1)))) \\ M. F. Hasler, Jul 23 2011
-
@CachedFunction
def A161198(n,k):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
for n in (0..6): [A161198(n,k) for k in (0..n)] # Peter Luschny, May 09 2013
A002596
Numerators in expansion of sqrt(1+x). Absolute values give numerators in expansion of sqrt(1-x).
Original entry on oeis.org
1, 1, -1, 1, -5, 7, -21, 33, -429, 715, -2431, 4199, -29393, 52003, -185725, 334305, -9694845, 17678835, -64822395, 119409675, -883631595, 1641030105, -6116566755, 11435320455, -171529806825, 322476036831, -1215486600363, 2295919134019
Offset: 0
sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
Coefficients are 1, 1/2, -1/8, 1/16, -5/128, 7/256, -21/1024, 33/2048, -429/32768, 715/65536, -2431/262144, 4199/524288, -29393/4194304, 52003/8388608, ...
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.281).
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 88.
- Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994): 72.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
Absolute values are essentially
A098597.
Cf.
A161198 = triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n. (End)
-
[(-1)^n*Numerator((1/(1-2*n))*Binomial(2*n,n)/(4^n)): n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
-
seq(numer(subs(k=1/2,expand(binomial(k,n)))),n=0..50); # James R. Buddenhagen, Aug 16 2014
-
1+InverseSeries[Series[2^p*y+y^2/2^q, {y, 0, 24}], x] (* p, q positive integers, then a(n)=numerator(y(n)). - Len Smiley, Apr 13 2000 *)
Numerator[CoefficientList[Series[Sqrt[1+x],{x,0,30}],x]] (* Harvey P. Dale, Oct 22 2011 *)
Table[Numerator[Product[(3 - 2 k)/(2 k) , {k, j}]], {j, 0, 30}] (* Dimitri Papadopoulos, Oct 22 2016 *)
-
x = 'x + O('x^40); apply(x->numerator(x), Vec(sqrt(1+x))) \\ Michel Marcus, Jan 14 2016
A002454
Central factorial numbers: a(n) = 4^n * (n!)^2.
Original entry on oeis.org
1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0
- Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
- E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.
- T. D. Noe, Table of n, a(n) for n = 0..50
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 7.
- Han Wang and Zhi-Wei Sun, Proof of a conjecture involving derangements and roots of unity, arXiv:2206.02589 [math.CO], 2022.
- Index to divisibility sequences.
- Index entries for sequences related to factorial numbers.
A004731
a(0) = 1; thereafter a(n) = denominator of (n-2)!! / (n-1)!!.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0
1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
- D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
-
import Data.Ratio ((%), numerator)
a004731 0 = 1
a004731 n = a004731_list !! n
a004731_list = map numerator ggs where
ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
-- Reinhard Zumkeller, Dec 08 2011
-
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
#
[1, seq(denom(doublefactorial(n-2)/doublefactorial(n-1)), n = 1..36)]; # Peter Luschny, Feb 09 2025
-
Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2,40]!!,2,1]] (* Harvey P. Dale, Nov 27 2014 *)
Join[{1},Table[Numerator[(n/2-1/2)!/((n/2-1)!Sqrt[Pi])], {n,1,31}]] (* Peter Luschny, Feb 08 2025 *)
-
f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
a(n) = if (n==0, 1, denominator(f(n-2)/f(n-1))); \\ Michel Marcus, Feb 08 2025
-
from sympy import gcd, factorial2
def A004731(n):
if n <= 1:
return 1
a, b = factorial2(n-2), factorial2(n-1)
return b//gcd(a,b) # Chai Wah Wu, Apr 03 2021
A033876
Expansion of 1/(2*x) * (1/(1-4*x)^(3/2)-1).
Original entry on oeis.org
3, 15, 70, 315, 1386, 6006, 25740, 109395, 461890, 1939938, 8112468, 33801950, 140408100, 581690700, 2404321560, 9917826435, 40838108850, 167890003050, 689232644100, 2825853840810, 11572544300460, 47342226683700, 193485622098600, 790066290235950, 3223470464162676
Offset: 0
G.f. = 3 + 15*x + 70*x^2 + 315*x^3 + 1386*x^4 + 6006*x^5 + 25740*x^6 + ...
-
a033876 n = sum $ zipWith (!!) zss [0..n] where
zss = take (n+1) $ g (take (n+1) (1 : [0,0..])) where
g us = (take (n+1) $ g' us) : g (0 : init us)
g' vs = last $ take (2 * n + 3) $
map snd $ iterate h (0, vs ++ reverse vs)
h (p,ws) = (1 - p, drop p $ zipWith (+) ([0] ++ ws) (ws ++ [0]))
-- Reinhard Zumkeller, Oct 25 2013
-
[(2*n+3)*Binomial(2*n+1, n) : n in [0..40]]; // Wesley Ivan Hurt, Nov 30 2017
-
[seq((n+2)*binomial(2*(n+2),n+2)/4, n=0..22)]; # Zerinvary Lajos, Jan 04 2007
-
Table[nn = 2 n + 1; (2 n + 1)! Coefficient[Series[Exp[x] (x^n/n!)^2/2, {x, 0, nn}], x^(2 n + 1)], {n, 30}] (* Geoffrey Critzer, Apr 19 2017 *)
Table[n Binomial[2 n, n]/4, {n, 2, 20}] (* Eric W. Weisstein, Nov 30 2017 *)
Table[(4^n Gamma[n + 3/2])/(Sqrt[Pi] Gamma[n + 1]), {n, 20}] (* Eric W. Weisstein, Nov 30 2017 *)
CoefficientList[Series[((1 - 4 x)^(-3/2) - 1)/(2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 30 2017 *)
-
x='x+O('x^66); Vec( 1/(2*x) * (1/(1-4*x)^(3/2)-1) ) \\ Joerg Arndt, May 01 2013
Original entry on oeis.org
2, 4, 16, 32, 256, 512, 2048, 4096, 65536, 131072, 524288, 1048576, 8388608, 16777216, 67108864, 134217728, 4294967296, 8589934592, 34359738368, 68719476736, 549755813888, 1099511627776, 4398046511104, 8796093022208
Offset: 0
-
denom((binomial(2n,n)*4^-n)/2); # Stephen Crowley, Mar 05 2007
-
Table[Numerator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
A161199
Numerators in expansion of (1-x)^(-5/2).
Original entry on oeis.org
1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0
Cf.
A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf.
A046161 (denominators for (1-x)^(-5/2)).
-
A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
[A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
-
def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
[A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161202
Numerators in expansion of (1-x)^(5/2).
Original entry on oeis.org
1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
[A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
[A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A162443
Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.
Original entry on oeis.org
5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1
The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle
A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to
A008956.
-
a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
# End program 1
nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A161201
Numerators in expansion of (1-x)^(-7/2).
Original entry on oeis.org
1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
[A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
[A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
Comments