A209007 T(n,k) = number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero and first and second differences in -k..k.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 2, 3, 5, 5, 2, 1, 2, 3, 10, 13, 10, 3, 1, 2, 7, 16, 31, 46, 23, 5, 1, 3, 7, 26, 71, 153, 157, 66, 7, 1, 3, 7, 38, 137, 409, 703, 608, 167, 10, 1, 3, 13, 55, 243, 923, 2313, 3393, 2245, 445, 13, 1, 3, 13, 75, 399, 1854, 6261, 13561, 16001
Offset: 1
Examples
Some solutions for n=6, k=6: .-2...-2...-3...-1...-4...-2...-2...-2...-3...-2...-3...-2...-2...-2...-1...-3 .-2....2...-2...-1...-3...-2...-1....0...-3....0...-3...-1...-1...-1...-1...-3 ..1....1....2....1....3...-1...-2....0....2...-2....3....1....2....1...-1....1 ..2....0....3....0....3...-1....2...-1....2....0....4....2....2....1....1....0 ..2....0....0....0....0....3....2....2....3....2....1...-1....0....0....0....3 .-1...-1....0....1....1....3....1....1...-1....2...-2....1...-1....1....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..184
Formula
Empirical for row n:
n=2: a(k) = a(k-1) + a(k-4) - a(k-5).
n=3: a(k) = a(k-1) + 2*a(k-3) - 2*a(k-4) - a(k-6) + a(k-7).
n=4: a(k) = 3*a(k-1) - 2*a(k-2) - 2*a(k-3) + 3*a(k-4) - a(k-5).
Comments