cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004526 Nonnegative integers repeated, floor(n/2).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {k: 1 <= 2k <= n}.
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(2).
Dimension of the space of weight 1 modular forms for Gamma_1(n+1).
Number of ways 2^n is expressible as r^2 - s^2 with s > 0. Proof: (r+s) and (r-s) both should be powers of 2, even and distinct hence a(2k) = a(2k-1) = (k-1) etc. - Amarnath Murthy, Sep 20 2002
Lengths of sides of Ulam square spiral; i.e., lengths of runs of equal terms in A063826. - Donald S. McDonald, Jan 09 2003
Number of partitions of n into two parts. A008619 gives partitions of n into at most two parts, so A008619(n) = a(n) + 1 for all n >= 0. Partial sums are A002620 (Quarter-squares). - Rick L. Shepherd, Feb 27 2004
a(n+1) is the number of 1's in the binary expansion of the Jacobsthal number A001045(n). - Paul Barry, Jan 13 2005
Number of partitions of n+1 into two distinct (nonzero) parts. Example: a(8) = 4 because we have [8,1],[7,2],[6,3] and [5,4]. - Emeric Deutsch, Apr 14 2006
Complement of A000035, since A000035(n)+2*a(n) = n. Also equal to the partial sums of A000035. - Hieronymus Fischer, Jun 01 2007
Number of binary bracelets of n beads, two of them 0. For n >= 2, a(n-2) is the number of binary bracelets of n beads, two of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = (-1)^n det(A). - Milan Janjic, Jan 24 2010
From Clark Kimberling, Mar 10 2011: (Start)
Let RT abbreviate rank transform (A187224). Then
RT(this sequence) = A187484;
RT(this sequence without 1st term) = A026371;
RT(this sequence without 1st 2 terms) = A026367;
RT(this sequence without 1st 3 terms) = A026363. (End)
The diameter (longest path) of the n-cycle. - Cade Herron, Apr 14 2011
For n >= 3, a(n-1) is the number of two-color bracelets of n beads, three of them are black, having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
Pelesko (2004) refers erroneously to this sequence instead of A008619. - M. F. Hasler, Jul 19 2012
Number of degree 2 irreducible characters of the dihedral group of order 2(n+1). - Eric M. Schmidt, Feb 12 2013
For n >= 3 the sequence a(n-1) is the number of non-congruent regions with infinite area in the exterior of a regular n-gon with all diagonals drawn. See A217748. - Martin Renner, Mar 23 2013
a(n) is the number of partitions of 2n into exactly 2 even parts. a(n+1) is the number of partitions of 2n into exactly 2 odd parts. This just rephrases the comment of E. Deutsch above. - Wesley Ivan Hurt, Jun 08 2013
Number of the distinct rectangles and square in a regular n-gon is a(n/2) for even n and n >= 4. For odd n, such number is zero, see illustration in link. - Kival Ngaokrajang, Jun 25 2013
x-coordinate from the image of the point (0,-1) after n reflections across the lines y = n and y = x respectively (alternating so that one reflection is applied on each step): (0,-1) -> (0,1) -> (1,0) -> (1,2) -> (2,1) -> (2,3) -> ... . - Wesley Ivan Hurt, Jul 12 2013
a(n) is the number of partitions of 2n into exactly two distinct odd parts. a(n-1) is the number of partitions of 2n into exactly two distinct even parts, n > 0. - Wesley Ivan Hurt, Jul 21 2013
a(n) is the number of permutations of length n avoiding 213, 231 and 312, or avoiding 213, 312 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also a(n) is the number of different patterns of 2-color, 2-partition of n. - Ctibor O. Zizka, Nov 19 2014
Minimum in- and out-degree for a directed K_n (see link). - Jon Perry, Nov 22 2014
a(n) is also the independence number of the triangular graph T(n). - Luis Manuel Rivera Martínez, Mar 12 2015
For n >= 3, a(n+4) is the least positive integer m such that every m-element subset of {1,2,...,n} contains distinct i, j, k with i + j = k (equivalently, with i - j = k). - Rick L. Shepherd, Jan 24 2016
More generally, the ordinary generating function for the integers repeated k times is x^k/((1 - x)(1 - x^k)). - Ilya Gutkovskiy, Mar 21 2016
a(n) is the number of numbers of the form F(i)*F(j) between F(n+3) and F(n+4), where 2 < i < j and F = A000045 (Fibonacci numbers). - Clark Kimberling, May 02 2016
The arithmetic function v_2(n,2) as defined in A289187. - Robert Price, Aug 22 2017
a(n) is also the total domination number of the (n-3)-gear graph. - Eric W. Weisstein, Apr 07 2018
Consider the numbers 1, 2, ..., n; a(n) is the largest integer t such that these numbers can be arranged in a row so that all consecutive terms differ by at least t. Example: a(6) = a(7) = 3, because of respectively (4, 1, 5, 2, 6, 3) and (1, 5, 2, 6, 3, 7, 4) (see link BMO - Problem 2). - Bernard Schott, Mar 07 2020
a(n-1) is also the number of integer-sided triangles whose sides a < b < c are in arithmetic progression with a middle side b = n (see A307136). Example, for b = 4, there exists a(3) = 1 such triangle corresponding to Pythagorean triple (3, 4, 5). For the triples, miscellaneous properties and references, see A336750. - Bernard Schott, Oct 15 2020
For n >= 1, a(n-1) is the greatest remainder on division of n by any k in 1..n. - David James Sycamore, Sep 05 2021
Number of incongruent right triangles that can be formed from the vertices of a regular n-gon is given by a(n/2) for n even. For n odd such number is zero. For a regular n-gon, the number of incongruent triangles formed from its vertices is given by A069905(n). The number of incongruent acute triangles is given by A005044(n). The number of incongruent obtuse triangles is given by A008642(n-4) for n > 3 otherwise 0, with offset 0. - Frank M Jackson, Nov 26 2022
The inverse binomial transform is 0, 0, 1, -2, 4, -8, 16, -32, ... (see A122803). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
		

References

  • G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, P(n,2).
  • Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1989, page 77 (partitions of n into at most 2 parts).

Crossrefs

a(n+2) = A008619(n). See A008619 for more references.
A001477(n) = a(n+1)+a(n). A000035(n) = a(n+1)-A002456(n).
a(n) = A008284(n, 2), n >= 1.
Zero followed by the partial sums of A000035.
Column 2 of triangle A094953. Second row of A180969.
Partial sums: A002620. Other related sequences: A010872, A010873, A010874.
Cf. similar sequences of the integers repeated k times: A001477 (k = 1), this sequence (k = 2), A002264 (k = 3), A002265 (k = 4), A002266 (k = 5), A152467 (k = 6), A132270 (k = 7), A132292 (k = 8), A059995 (k = 10).
Cf. A289187, A139756 (binomial transf).

Programs

  • Haskell
    a004526 = (`div` 2)
    a004526_list = concatMap (\x -> [x, x]) [0..]
    -- Reinhard Zumkeller, Jul 27 2012
    
  • Magma
    [Floor(n/2): n in [0..100]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A004526 := n->floor(n/2); seq(floor(i/2),i=0..50);
  • Mathematica
    Table[(2n - 1)/4 + (-1)^n/4, {n, 0, 70}] (* Stefan Steinerberger, Apr 02 2006 *)
    f[n_] := If[OddQ[n], (n - 1)/2, n/2]; Array[f, 74, 0] (* Robert G. Wilson v, Apr 20 2012 *)
    With[{c=Range[0,40]},Riffle[c,c]] (* Harvey P. Dale, Aug 26 2013 *)
    CoefficientList[Series[x^2/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {0, 0, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Floor[Range[0, 40]/2] (* Eric W. Weisstein, Apr 07 2018 *)
  • Maxima
    makelist(floor(n/2),n,0,50); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=n\2 /* Jaume Oliver Lafont, Mar 25 2009 */
    
  • PARI
    x='x+O('x^100); concat([0, 0], Vec(x^2/((1+x)*(x-1)^2))) \\ Altug Alkan, Mar 21 2016
    
  • Python
    def a(n): return n//2
    print([a(n) for n in range(74)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    def a(n) : return( dimension_cusp_forms( Gamma0(2), 2*n+4) ); # Michael Somos, Jul 03 2014
    
  • Sage
    def a(n) : return( dimension_modular_forms( Gamma1(n+1), 1) ); # Michael Somos, Jul 03 2014
    

Formula

G.f.: x^2/((1+x)*(x-1)^2).
a(n) = floor(n/2).
a(n) = ceiling((n+1)/2). - Eric W. Weisstein, Jan 11 2024
a(n) = 1 + a(n-2).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(2*n) = a(2*n+1) = n.
a(n+1) = n - a(n). - Henry Bottomley, Jul 25 2001
For n > 0, a(n) = Sum_{i=1..n} (1/2)/cos(Pi*(2*i-(1-(-1)^n)/2)/(2*n+1)). - Benoit Cloitre, Oct 11 2002
a(n) = (2*n-1)/4 + (-1)^n/4; a(n+1) = Sum_{k=0..n} k*(-1)^(n+k). - Paul Barry, May 20 2003
E.g.f.: ((2*x-1)*exp(x) + exp(-x))/4. - Paul Barry, Sep 03 2003
G.f.: (1/(1-x)) * Sum_{k >= 0} t^2/(1-t^4) where t = x^2^k. - Ralf Stephan, Feb 24 2004
a(n+1) = A000120(A001045(n)). - Paul Barry, Jan 13 2005
a(n) = (n-(1-(-1)^n)/2)/2 = (1/2)*(n-|sin(n*Pi/2)|). Likewise: a(n) = (n-A000035(n))/2. Also: a(n) = Sum_{k=0..n} A000035(k). - Hieronymus Fischer, Jun 01 2007
The expression floor((x^2-1)/(2*x)) (x >= 1) produces this sequence. - Mohammad K. Azarian, Nov 08 2007; corrected by M. F. Hasler, Nov 17 2008
a(n+1) = A002378(n) - A035608(n). - Reinhard Zumkeller, Jan 27 2010
a(n+1) = A002620(n+1) - A002620(n) = floor((n+1)/2)*ceiling((n+1)/2) - floor(n^2/4). - Jonathan Vos Post, May 20 2010
For n >= 2, a(n) = floor(log_2(2^a(n-1) + 2^a(n-2))). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 24 2010
A001057(n-1) = (-1)^n*a(n), n > 0. - M. F. Hasler, Jul 19 2012
a(n) = A008615(n) + A002264(n). - Reinhard Zumkeller, Apr 28 2014
Euler transform of length 2 sequence [1, 1]. - Michael Somos, Jul 03 2014

Extensions

Partially edited by Joerg Arndt, Mar 11 2010, and M. F. Hasler, Jul 19 2012

A002265 Nonnegative integers repeated 4 times.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0

Views

Author

Keywords

Comments

For n>=1 and i=sqrt(-1) let F(n) the n X n matrix of the Discrete Fourier Transform (DFT) whose element (j,k) equals exp(-2*Pi*i*(j-1)*(k-1)/n)/sqrt(n). The multiplicities of the four eigenvalues 1, i, -1, -i of F(n) are a(n+4), a(n-1), a(n+2), a(n+1), hence a(n+4) + a(n-1) + a(n+2) + a(n+1) = n for n>=1. E.g., the multiplicities of the eigenvalues 1, i, -1, -i of the DFT-matrix F(4) are a(8)=2, a(3)=0, a(6)=1, a(5)=1, summing up to 4. - Franz Vrabec, Jan 21 2005
Complement of A010873, since A010873(n)+4*a(n)=n. - Hieronymus Fischer, Jun 01 2007
For even values of n, a(n) gives the number of partitions of n into exactly two parts with both parts even. - Wesley Ivan Hurt, Feb 06 2013
a(n-4) counts number of partitions of (n) into parts 1 and 4. For example a(11) = 3 with partitions (44111), (41111111), (11111111111). - David Neil McGrath, Dec 04 2014
a(n-4) counts walks (closed) on the graph G(1-vertex; 1-loop, 4-loop) where order of loops is unimportant. - David Neil McGrath, Dec 04 2014
Number of partitions of n into 4 parts whose smallest 3 parts are equal. - Wesley Ivan Hurt, Jan 17 2021

References

  • V. Cizek, Discrete Fourier Transforms and their Applications, Adam Hilger, Bristol 1986, p. 61.

Crossrefs

Zero followed by partial sums of A011765.
Partial sums: A130519. Other related sequences: A004526, A010872, A010873, A010874.
Third row of A180969.

Programs

Formula

a(n) = floor(n/4), n>=0;
G.f.: (x^4)/((1-x)*(1-x^4)).
a(n) = (2*n-(3-(-1)^n-2*(-1)^floor(n/2)))/8; also a(n) = (2*n-(3-(-1)^n-2*sin(Pi/4*(2*n+1+(-1)^n))))/8 = (n-A010873(n))/4. - Hieronymus Fischer, May 29 2007
a(n) = (1/4)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2). - Hieronymus Fischer, Jul 04 2007
a(n) = floor((n^4-1)/4*n^3) (n>=1); a(n) = floor((n^4-n^3)/(4*n^3-3*n^2)) (n>=1). - Mohammad K. Azarian, Nov 08 2007 and Aug 01 2009
For n>=4, a(n) = floor( log_4( 4^a(n-1) + 4^a(n-2) + 4^a(n-3) + 4^a(n-4) ) ). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 26 2010
a(n) = A173562(n)-A000290(n); a(n+2) = A035608(n)-A173562(n). - Reinhard Zumkeller, Feb 21 2010
a(n+1) = A140201(n) - A057353(n+1). - Reinhard Zumkeller, Feb 26 2011
a(n) = ceiling((n-3)/4), n >= 0. - Wesley Ivan Hurt, Jun 01 2013
a(n) = (2*n + (-1)^n + 2*sin(Pi*n/2) + 2*cos(Pi*n/2) - 3)/8. - Todd Silvestri, Oct 27 2014
E.g.f.: (x/4 - 3/8)*exp(x) + exp(-x)/8 + (sin(x)+cos(x))/4. - Robert Israel, Oct 30 2014
a(n) = a(n-1) + a(n-4) - a(n-5) with initial values a(3)=0, a(4)=1, a(5)=1, a(6)=1, a(7)=1. - David Neil McGrath, Dec 04 2014
a(n) = A004526(A004526(n)). - Bruno Berselli, Jul 01 2016
From Guenther Schrack, May 03 2019: (Start)
a(n) = (2*n - 3 + (-1)^n + 2*(-1)^(n*(n-1)/2))/8.
a(n) = a(n-4) + 1, a(k)=0 for k=0,1,2,3, for n > 3. (End)

A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively. Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

G.f.: (1+x)/(1+x^2).
a(n) = S(n, 0) + S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.
a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := Sum_{n>=0} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008
Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010
a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011
Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012
E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012
From Ricardo Soares Vieira, Oct 15 2019: (Start)
E.g.f.: sin(x) + cos(x) = sqrt(2)*sin(x + Pi/4).
a(n) = sqrt(2)*(d^n/dx^n) sin(x)|_x=Pi/4, i.e., a(n) equals sqrt(2) times the n-th derivative of sin(x) evaluated at x=Pi/4. (End)
a(n) = 4*floor(n/4) - 2*floor(n/2) + 1. - Ridouane Oudra, Mar 23 2024

A084099 Expansion of (1+x)^2/(1+x^2).

Original entry on oeis.org

1, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Inverse binomial transform of A077860. Partial sums of A084100.
Transform of sqrt(1+2x)/sqrt(1-2x) (A063886) under the Chebyshev transformation A(x)->((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Oct 12 2004
Euler transform of length 4 sequence [2, -3, 0, 1]. - Michael Somos, Aug 04 2009

Examples

			G.f. = 1 + 2*x - 2*x^3 + 2*x^5 - 2*x^7 + 2*x^9 - 2*x^11 + 2*x^13 - 2*x^15 + ...
		

Crossrefs

Programs

  • Magma
    [1] cat [Integers()!((1-(-1)^n)*(-1)^(n*(n-1)/2)): n in [1..100]]; // Wesley Ivan Hurt, Oct 27 2015
    
  • Maple
    A084099:=n->(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4): 1,seq(A084099(n), n=1..100); # Wesley Ivan Hurt, Oct 27 2015
  • Mathematica
    CoefficientList[Series[(1+x)^2/(1+x^2),{x,0,110}],x] (* or *) Join[ {1}, PadRight[{},120,{2,0,-2,0}]] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * if( n%2, (-1)^(n\2)) )}; /* Michael Somos, Aug 04 2009 */
    
  • PARI
    a(n) = if(n==0, 1, I*((-I)^n-I^n)) \\ Colin Barker, Oct 27 2015
    
  • PARI
    Vec((1+x)^2/(1+x^2) + O(x^100)) \\ Colin Barker, Oct 27 2015

Formula

G.f.: (1+x)^2/(1+x^2).
a(n) = 2 * A101455(n) for n>0. - N. J. A. Sloane, Jun 01 2010
a(n+2) = (-1)^A180969(1,n)*((-1)^n - 1). - Adriano Caroli, Nov 18 2010
G.f.: 4*x + 2/(1+x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
From Wesley Ivan Hurt, Oct 27 2015: (Start)
a(n) = (1-sign(n)*(-1)^n)*(-1)^floor(n/2).
a(n) = 2*(n mod 2)*(-1)^floor(n/2) for n>0, a(0)=1.
a(n) = (1-(-1)^n)*(-1)^(n*(n-1)/2) for n>0, a(0)=1. (End)
From Colin Barker, Oct 27 2015: (Start)
a(n) = -a(n-2).
a(n) = i*((-i)^n-i^n) for n>0, where i = sqrt(-1).
(End)

A132292 Integers repeated 8 times: a(n) = floor((n-1)/8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 06 2007

Keywords

Comments

Also floor((n^8-1)/(8*n^7)).

Crossrefs

Programs

Formula

Also, a(n) = floor((n^8-n^7)/(8n^7-7n^6)). - Mohammad K. Azarian, Nov 18 2007
a(n) = A180969(3,n).
a(n) = (r - 8 + 4*sin(r*Pi/8))/16 where r = 2*n - 1 - 2*cos(n*Pi/2) - cos(n*Pi) + 2*sin(n*Pi/2). - Wesley Ivan Hurt, Oct 04 2018

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
New name from Wesley Ivan Hurt, Jun 17 2013

A143621 a(n) = (-1)^binomial(n,4): Periodic sequence 1,1,1,1,-1,-1,-1,-1,... .

Original entry on oeis.org

1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Periodic sequence with period 8. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143622 (r = 3).
Nonsimple continued fraction expansion of A188943 = 1.767591879243... - R. J. Mathar, Mar 08 2012

Examples

			G.f. = 1 + x + x^2 + x^3 - x^4 - x^5 - x^6 - x^7 + x^8 + x^9 + x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a := n -> (-1)^binomial(n,4):
    seq(a(n),n = 0..103);
  • Mathematica
    Table[(-1)^Binomial[n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, May 20 2014 *)
    a[ n_] := (-1)^Quotient[n, 4]; (* Michael Somos, May 05 2015 *)
    PadRight[{},120,{1,1,1,1,-1,-1,-1,-1}] (* Harvey P. Dale, Nov 29 2024 *)
  • PARI
    {a(n) = (-1)^(n \ 4)}; /* Michael Somos, Sep 30 2011 */
    
  • PARI
    x='x+O('x^99); Vec((1-x^4)^2/((1-x)*(1-x^8))) \\ Altug Alkan, Apr 15 2016
    
  • Python
    def A143621(n): return -1 if n&4 else 1 # Chai Wah Wu, Jan 18 2023

Formula

a(n) = (-1)^binomial(n,4) = (-1)^floor(n/4), since Sum_{k = 1..n-3} k*(k+1)(k+2)/3! = binomial(n,4) == floor(n/4) (mod 2) for n = 0,1,...,7 by calculation and both sides increase by an even number if we substitute n+8 for n.
a(n) = (1/4)*((n+4) mod 8 - n mod 8).
O.g.f.: (1+x+x^2+x^3)/(1+x^4) = (1+x)*(1+x^2)/(1+x^4) = (1-x^4)/((1-x)*(1+x^4)).
Define E(k) = Sum_{n>=0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is an integral linear combination of E(0), E(1), E(2) and E(3) (a Dobinski-type relation).
a(n) = (-1)^A180969(2,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
Euler transform of length 8 sequence [ 1, 0, 0, -2, 0, 0, 0, 1]. - Michael Somos, Sep 30 2011
G.f.: (1 - x^4)^2 / ((1 - x) * (1 - x^8)). a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Sep 30 2011
E.g.f.: sin(x/sqrt(2))*sinh(x/sqrt(2)) + (sqrt(2)*sin(x/sqrt(2)) + cos(x/sqrt(2)))*cosh(x/sqrt(2)). - Ilya Gutkovskiy, Apr 15 2016

A122461 Repetitions of even numbers four times.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of roots of P(x) = 1 + x + x^2 + … + x^n in the right half-plane. - Michel Lagneau, Oct 30 2012

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 70 do:it:=0:y:=[fsolve(sum('x^i ', 'i'=0..n-1), x, complex)] : for m from 1 to nops(y) do : if Re(y[m]) > 0 then it:=it+1:else fi:od: printf(`%d, `,it):od: # Michel Lagneau, Oct 31 2012
    A122461:=n->2*floor(n/4); seq(A122461(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Table[2 Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 06 2013 *)
    Table[PadRight[{},4,2n],{n,0,20}]//Flatten (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,0,0,0,2},80] (* Harvey P. Dale, Mar 15 2020 *)
  • Python
    def A122461(n): return n>>1&-2 # Chai Wah Wu, Jan 30 2023

Formula

a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2))+1/4*(2*cos(n*Pi/2)+1+(-1)^n)-2. - Paolo P. Lava, May 15 2007
a(n) = 2*A002265(n) = 2*A180969(2,n). [Adriano Caroli, Nov 25 2010, corrected by R. J. Mathar, Nov 26 2010]
G.f.: 2*x^4/(1-x-x^4+x^5). [Bruno Berselli, Oct 31 2012]
a(n) = (-3+(-1)^n+2*i^((n-1)*n)+2*n)/4, where i=sqrt(-1). [Bruno Berselli, Oct 31 2012]
a(n) = 2 * floor(n/4). - Wesley Ivan Hurt, Dec 06 2013
a(n) = (2*n-3+2*cos(n*Pi/2)+cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017

A143622 a(n) = (-1)^binomial(n,8): Periodic sequence 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,... .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Periodic sequence with period 16. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143621 (r = 2).
Nonsimple continued fraction expansion of (47+sqrt(445))/42 = 1.62131007404... - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a := n -> (-1)^binomial(n,8):
    seq(a(n),n = 0..95);

Formula

a(n) = (-1)^binomial(n,8) = (-1)^floor(n/8), since sum {k = 1..n-7} k*(k+1)*...*(k+6)/7! = binomial(n,8) == floor(n/8) (mod 2) for n = 0,1,...,15 by calculation and both sides increase by an even number if we substitute n+16 for n. a(n) = (1/8)*((n+8) mod 16 - n mod 16).
O.g.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)/(1+x^8) = (1+x)*(1+x^2)*(1+x^4)/(1+x^8) = (1-x^8)/((1-x)*(1+x^8)).
Define E(k) = Sum_{n>=0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is a an integral linear combination of E(0),E(1),...,E(7) (a Dobinski-type relation).
a(n) = (-1)^A180969(3,n).

A004529 Ratios of successive terms are 1,1,1,2,3,3,3,4,5,5,5,6,...

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 54, 216, 1080, 5400, 27000, 162000, 1134000, 7938000, 55566000, 444528000, 4000752000, 36006768000, 324060912000, 3240609120000, 35646700320000, 392113703520000, 4313250738720000
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    seq(seq(16^k * k! * GAMMA(k+1/2)^3*(2*k+1)^j/GAMMA(1/2)^3,j=0..3),k=0..10); # Robert Israel, Jun 19 2018

Formula

a(n) = Product_{j=0..n-1} (A180969(2,j+1) + A180969(2,j) + 1) = a(n-1) * (A180969(2,n-1) + A180969(2,n-2) + 1). - Adriano Caroli, Nov 27 2010
a(4*k+j) = 16^k * k! * Gamma(k+1/2)^3*(2*k+1)^j/Gamma(1/2)^3 for 0 <= j <= 3. - Robert Israel, Jun 19 2018

A173711 Nonnegative integers, six even followed by two odd.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17
Offset: 0

Views

Author

Adriano Caroli, Nov 25 2010

Keywords

Programs

  • Magma
    I:=[0,0,0,0,0,0,1]; [n le 7 select I[n] else Self(n-1) + Self(n-2) - Self(n-3)-Self(n-4)+Self(n-5)+Self(n-6)-Self(n-7): n in [1..80]]; // Vincenzo Librandi, Nov 24 2016
  • Mathematica
    LinearRecurrence[{1,1,-1,-1,1,1,-1},{0,0,0,0,0,0,1},50] (* G. C. Greubel, Nov 23 2016 *)
    CoefficientList[Series[x^6 / ((x + 1) (x^4 + 1) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 24 2016 *)
    Table[If[EvenQ[n],PadRight[{},6,n],{n,n}],{n,0,20}]//Flatten (* Harvey P. Dale, Nov 07 2020 *)

Formula

a(n) = A180969(3,n) + A180969(3,n+2).
G.f.: x^6 / ((x+1)*(x^4+1)*(x-1)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7). - G. C. Greubel, Nov 23 2016
Showing 1-10 of 10 results.