cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 146 results. Next

A090816 a(n) = (3*n+1)!/((2*n)! * n!).

Original entry on oeis.org

1, 12, 105, 840, 6435, 48048, 352716, 2558160, 18386775, 131231100, 931395465, 6580248480, 46312074900, 324897017760, 2272989850440, 15863901576864, 110487596768703, 768095592509700, 5330949171823275, 36945070220658600, 255702514854135195, 1767643865751234240
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Feb 11 2004

Keywords

Examples

			a(1) = 4!/(2!*1!) = 24/2 = 12.
		

Crossrefs

Halfdiagonal of triangle A003506.

Programs

  • Magma
    [Factorial(3*n+1)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // G. C. Greubel, Feb 03 2019
    
  • Maple
    a:=n-> binomial(3*n+1,2*n)*(n+1): seq(a(n), n=0..20); # Zerinvary Lajos, Jul 31 2006
  • Mathematica
    f[n_] := 1/Integrate[(x^2 - x^3)^n, {x, 0, 1}]; Table[ f[n], {n, 0, 19}] (* Robert G. Wilson v, Feb 18 2004 *)
    Table[1/Beta[2*n+1,n+1], {n,0,20}] (* G. C. Greubel, Feb 03 2019 *)
  • PARI
    a(n)=if(n<0,0,(3*n+1)!/(2*n)!/n!) /* Michael Somos, Feb 14 2004 */
    
  • PARI
    a(n)=if(n<0,0,1/subst(intformal((x^2-x^3)^n),x,1)) /* Michael Somos, Feb 14 2004 */
    
  • Sage
    [1/beta(2*n+1,n+1) for n in range(20)] # G. C. Greubel, Feb 03 2019

Formula

a(n) = A005809(n) * A016777(n).
a(n) = 1/(Integral_{x=0..1} (x^2 - x^3)^n dx).
G.f.: (((8 + 27*z)*(1/(4*sqrt(4 - 27*z) + 12*i*sqrt(3)*sqrt(z))^(1/3) + 1/(4*sqrt(4 - 27*z) - 12*i*sqrt(3)*sqrt(z))^(1/3)) - 3*i*sqrt(3)*sqrt(4 - 27*z)*sqrt(z)*(1/(4*sqrt(4 - 27*z) + 12*i*sqrt(3)*sqrt(z))^(1/3) - 1/(4*sqrt(4 - 27*z) - 12*i*sqrt(3)*sqrt(z))^(1/3)))*8^(1/3))/(2*(4 - 27*z)^(3/2)), where i is the imaginary unit. - Karol A. Penson, Feb 06 2024
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (2*n + 2*k + 1)*binomial(2*n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (2*n + 2*k + 1) * binomial(2*n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+2)*n+1, 2*n). Cf. A002457 and A306290. - Peter Bala, Nov 02 2024
From Amiram Eldar, Dec 09 2024: (Start)
Sum_{n>=0} 1/a(n) = f(c) = 1.09422712102982285131..., where f(x) = (x*(x-1)/(3*x-1)) * ((3/2)*log(abs(x/(x-1))) + ((3*x-2)/sqrt(3*x^2-4*x)) * (arctan(x/sqrt(3*x^2-4*x)) + arctan((2-x)/sqrt(3*x^2-4*x)))), and c = 2/3 + (1/3)*((25+3*sqrt(69))/2)^(-1/3) + (1/3)*((25+3*sqrt(69))/2)^(1/3).
Sum_{n>=0} (-1)^n/a(n) = f(d) = 0.92513707957813718109..., where f(x) is defined above, and d = 2/3 - (1/3)*((29+3*sqrt(93))/2)^(-1/3) - (1/3)*((29+3*sqrt(93))/2)^(1/3).
Both formulas are from Batir (2013). (End)

Extensions

New definition from Vladeta Jovovic, Feb 12 2004

A092443 Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.

Original entry on oeis.org

3, 12, 50, 210, 882, 3696, 15444, 64350, 267410, 1108536, 4585308, 18929092, 78004500, 320932800, 1318498920, 5409723510, 22169259090, 90751353000, 371125269900, 1516311817020, 6189965556060, 25249187564640, 102917884095000, 419218847880300, 1706543186909652
Offset: 1

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Comments

The sequence 1, 3, 12, 50, ... is ((n+2)/2)*C(2n,n) with g.f. F(1/2,3;2;4x). - Paul Barry, Sep 18 2008

Examples

			a(3) = 5!/2!2! + 6!/3!3! = 50.
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).

Crossrefs

Programs

  • Mathematica
    Array[Binomial[2 # + 1, # + 1] &[# - 1]*(# + 2) &, 22] (* Michael De Vlieger, Dec 17 2017 *)
  • MuPAD
    combinat::catalan(n) *binomial(n+2,2) $ n = 1..22 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n) = (n+2)*binomial(2*n-1, n); \\ Altug Alkan, Dec 17 2017

Formula

a(n) = (2*n-1)!/((n-1)!)^2+(2*n)!/(n!)^2 = A002457(n-1) + A000984(n).
a(n) = (n+2)*A001700(n-1). - Vladeta Jovovic, Jul 12 2004
n*a(n) + (-7*n+4)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
From Amiram Eldar, Jan 27 2024: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi*(11*sqrt(3)-3*Pi)/9 - 13.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)*(13*sqrt(5)-30*log(phi))/5 - 11, where phi is the golden ratio (A001622). (End)
From Peter Bala, Aug 02 2024: (Start)
a(n) = 1/(n + 1)^2 * Sum_{k = 1..n+1} (k^3)*binomial(n+1, k)^2 = hypergeom([2, -n, -n], [1, 1], 1).
a(n) = 2*(n + 2)*(2*n - 1)/(n*(n + 1)) * a(n-1) with a(1) = 3. (End)

A167713 a(n) = 16^n * Sum_{k=0..n} binomial(2*k, k) / 16^k.

Original entry on oeis.org

1, 18, 294, 4724, 75654, 1210716, 19372380, 309961512, 4959397062, 79350401612, 1269606610548, 20313706474200, 325019306291356, 5200308911062296, 83204942617113336, 1331279082028930896, 21300465313063974726, 340807445011357201836, 5452919120190790364676
Offset: 0

Views

Author

Alexander Adamchuk, Nov 10 2009

Keywords

Comments

p^2 divides a((p-3)/2) for prime p of the form p = 6k + 1 (A002476).
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), a(n) = A167713 (B=16).

Crossrefs

Programs

  • Maple
    A167713 := proc(n) coeftayl( 1/(1-16*x)/sqrt(1-4*x),x=0,n) ; end proc: seq(A167713(n),n=0..40) ; # R. J. Mathar, Nov 13 2009
  • Mathematica
    Table[ 16^n * Sum[ (2k)!/(k!)^2 / 16^k, {k,0,n} ], {n,0,20} ]
    CoefficientList[Series[1 / ((1 - 16 x) Sqrt[1 - 4 x]), {x, 0, 20}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = 16^n * Sum_{k=0..n} ((2k)!/(k!)^2) / 16^k.
a(n) = 16^n * Sum_{k=0..n} binomial(2k,k) / 16^k.
G.f.: 1/((1-16*x)*sqrt(1-4*x)). - R. J. Mathar, Nov 13 2009
From Vaclav Kotesovec, Oct 20 2012: (Start)
Recurrence: n*a(n) = 2*(10*n-1)*a(n-1) - 32*(2*n-1)*a(n-2).
a(n) ~ 2^(4*n+1)/sqrt(3). (End)

Extensions

Extended by R. J. Mathar, Nov 13 2009

A331511 Square array T(n,k), n >= 0, k >= 0, read by descending antidiagonals, where column k is the expansion of (1 - (k-3)*x)/(1 - 2*(k-1)*x + ((k-3)*x)^2)^(3/2).

Original entry on oeis.org

1, 1, 0, 1, 2, -15, 1, 4, -6, 32, 1, 6, 9, -12, 105, 1, 8, 30, 16, 30, -576, 1, 10, 57, 140, 25, 60, 105, 1, 12, 90, 384, 630, 36, -140, 5760, 1, 14, 129, 772, 2505, 2772, 49, -280, -13167, 1, 16, 174, 1328, 6430, 16008, 12012, 64, 630, -30400
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2020

Keywords

Examples

			Square array begins:
      1,   1,  1,    1,     1,     1, ...
      0,   2,  4,    6,     8,    10, ...
    -15,  -6,  9,   30,    57,    90, ...
     32, -12, 16,  140,   384,   772, ...
    105,  30, 25,  630,  2505,  6430, ...
   -576,  60, 36, 2772, 16008, 52524, ...
.
From _Peter Luschny_, Jan 20 2020: (Start)
Read by ascending antidiagonals gives:
[0]      1
[1]      0,    1
[2]    -15,    2,  1
[3]     32,   -6,  4,     1
[4]    105,  -12,  9,     6,     1
[5]   -576,   30, 16,    30,     8,    1
[6]    105,   60, 25,   140,    57,   10,    1
[7]   5760, -140, 36,   630,   384,   90,   12,   1
[8] -13167, -280, 49,  2772,  2505,  772,  129,  14,  1
[9] -30400,  630, 64, 12012, 16008, 6430, 1328, 174, 16, 1 (End)
		

Crossrefs

Columns k=0..5 give A331551, A331552, A000290(n+1), A002457, A108666(n+1), A331323.
T(n,n+3) gives A331512.

Programs

  • Maple
    T := (n, k) -> (n + 1)^2*hypergeom([-n, -n], [2], k - 2):
    seq(lprint(seq(simplify(T(n,k)), k=0..7)), n=0..6) # Peter Luschny, Jan 20 2020
  • Mathematica
    T[n_, k_] := (n + 1)^2 * HypergeometricPFQ[{-n, -n}, {2}, k - 2];  Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)

Formula

T(n,k) = Sum_{j=0..n} (k-3)^(n-j) * (n+j+1) * binomial(n,j) * binomial(n+j,j).
T(n,k) = Sum_{j=0..n} (k-2)^j * (j+1) * binomial(n+1,j+1)^2.
T(n,k) = (n + 1)^2*hypergeom([-n, -n], [2], k - 2). - Peter Luschny, Jan 20 2020
n * (2*n-1) * T(n,k) = 2 * (2 * (k-1) * n^2 - k + 2) * T(n-1,k) - (k-3)^2 * n * (2*n+1) * T(n-2,k) for n>1. - Seiichi Manyama, Jan 25 2020

A337464 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1+2*(k-4)*x+((k+4)*x)^2) * (1-(k+4)*x+sqrt(1+2*(k-4)*x+((k+4)*x)^2)) )).

Original entry on oeis.org

1, 1, 6, 1, 5, 30, 1, 4, 11, 140, 1, 3, -6, -29, 630, 1, 2, -21, -120, -365, 2772, 1, 1, -34, -139, -266, -1409, 12012, 1, 0, -45, -92, 531, 2520, -155, 51480, 1, -1, -54, 15, 1654, 6489, 17380, 29485, 218790, 1, -2, -61, 176, 2755, 4828, -9723, -13104, 170035, 923780
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2020

Keywords

Examples

			Square array begins:
     1,     1,    1,    1,    1,     1, ...
     6,     5,    4,    3,    2,     1, ...
    30,    11,   -6,  -21,  -34,   -45, ...
   140,   -29, -120, -139,  -92,    15, ...
   630,  -365, -266,  531, 1654,  2755, ...
  2772, -1409, 2520, 6489, 4828, -5853, ...
		

Crossrefs

Columns k=0..4 give A002457, A337394, A337466, A337467, A337397.
Main diagonal gives A337465.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[2*j, j] * Binomial[2*n+1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    {T(n, k) = sum(j=0, n, (-k)^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} (-k)^(n-j) * binomial(2*j,j) * binomial(2*n+1,2*j).
T(0,k) = 1, T(1,k) = 6-k and n * (2*n+1) * (4*n-3) * T(n,k) = (4*n-1) * (-4*(k-4)*n^2+2*(k-4)*n+k-2) * T(n-1,k) - (k+4)^2 * (n-1) * (2*n-1) * (4*n+1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 29 2020

A062344 Triangle of binomial(2*n, k) with n >= k.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 15, 20, 1, 8, 28, 56, 70, 1, 10, 45, 120, 210, 252, 1, 12, 66, 220, 495, 792, 924, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620
Offset: 0

Views

Author

Henry Bottomley, Jul 06 2001

Keywords

Comments

From Wolfdieter Lang, Sep 19 2012: (Start)
The triangle a(n,k) appears in the formula F(2*l+1)^(2*n) = (sum(a(n,k)*L(2*(n-k)*(2*l+1)),k=0..n-1) + a(n,n))/5^n, n>=0, l>=0, with F=A000045 (Fibonacci) and L=A000032 (Lucas).
The signed triangle as(n,k):=a(n,k)*(-1)^k appears in the formula F(2*l)^(2*n) = (sum(as(n,k)*L(4*(n-k)*l),k=0..n-1) + as(n,n))/5^n, n>=0, l>=0. Proof with the Binet-de Moivre formula for F and L and the binomial formula. (End)

Examples

			Rows start
  (1),
  (1,2),
  (1,4,6),
  (1,6,15,20)
  etc.
Row n=2, (1,4,6):
F(2*l+1)^4 = (1*L(4*(2*l+1)) + 4*L(2*(2*l+1)) + 6)/25,
F(2*l)^4 = (1*L(8*l) - 4*L(4*l) + 6)/25, l>=0, F=A000045, L=A000032. See a comment above. - _Wolfdieter Lang_, Sep 19 2012
		

Crossrefs

Columns include (sometimes truncated) A000012, A005843, A000384, A002492, A053134 etc. Right hand side includes A000984, A001791, A002694, A002696 etc. Row sums are A032443. Row alternate differences (e.g., 6-4+1=3 or 20-15+6-1=10) are A001700.
Cf. A122366.
a(2*n,n) gives A005810.

Programs

  • Magma
    [[Binomial(2*n, k): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 28 2018
  • Mathematica
    Flatten[Table[Binomial[2 n, k], {n, 0, 20}, {k, 0, n}]] (* G. C. Greubel, Jun 28 2018 *)
  • Maxima
    create_list(binomial(2*n,k),n,0,9,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0, 20, for(k=0, n, print1(binomial(2*n, k), ", "))) \\ G. C. Greubel, Jun 28 2018
    

Formula

a(n,k) = a(n,k-1)*((2*n+1)/k-1) with a(n,0)=1.
G.f.: 1/((1-sqrt(1-4*x*y))^4/(16*x*y^2) + sqrt(1-4*x*y) - x). - Vladimir Kruchinin, Jan 26 2021

A093375 Array T(m,n) read by ascending antidiagonals: T(m,n) = m*binomial(n+m-2, n-1) for m, n >= 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 18, 8, 1, 6, 25, 40, 30, 10, 1, 7, 36, 75, 80, 45, 12, 1, 8, 49, 126, 175, 140, 63, 14, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 11, 100, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 12
Offset: 1

Views

Author

Ralf Stephan, Apr 28 2004

Keywords

Comments

Number of n-long m-ary words avoiding the pattern 1-1'2'.
T(n,n+1) = Sum_{i=1..n} T(n,i).
Exponential Riordan array [(1+x)e^x, x] as a number triangle. - Paul Barry, Feb 17 2009
From Peter Bala, Jul 22 2014: (Start)
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A059298. (End)

Examples

			Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows:
   1   1   1   1   1   1 ...
   2   4   6   8  10  12 ...
   3   9  18  30  45  63 ...
   4  16  40  80 140 224 ...
   5  25  75 175 350 630 ...
   ...
Triangle S(n,k) = T(n-k+1, k+1) begins
.n\k.|....0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....2....1
..2..|....3....4....1
..3..|....4....9....6....1
..4..|....5...16...18....8....1
..5..|....6...25...40...30...10....1
..6..|....7...36...75...80...45...12....1
...
		

Crossrefs

Rows include A045943. Columns include A002411, A027810.
Main diagonal is A037965. Subdiagonals include A002457.
Antidiagonal sums are A001792.
See A103283 for a signed version.
Cf. A103406, A059298, A073107 (unsigned inverse).

Programs

  • GAP
    nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));;
    b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
    
  • Mathematica
    nmax = 10;
    T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]];
    row[n_] := T[[n+1, 1 ;; n+1]];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019

Formula

Triangle = P*M, the binomial transform of the infinite bidiagonal matrix M with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal, and zeros elsewhere. P = Pascal's triangle as an infinite lower triangular matrix. - Gary W. Adamson, Nov 05 2006
From Peter Bala, Sep 20 2012: (Start)
E.g.f. for triangle: (1 + z)*exp((1 + x)*z) = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2/2! + ....
O.g.f. for triangle: (1 - x*z)/(1 - z - x*z)^2 = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2 + ....
The n-th row polynomial R(n,x) of the triangle equals (1+x)^n + n*(1+x)^(n-1) for n >= 0 and satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x+y) = Sum_{k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of the triangle is a signed version of A073107. (End)
From Tom Copeland, Oct 20 2015: (Start)
With offset 0 and D = d/dx, the raising operator for the signed row polynomials P(n,x) is RP = x - d{log[e^D/(1-D)]}/dD = x - 1 - 1/(1-D) = x - 2 - D - D^2 + ..., i.e., RP P(n,x) = P(n+1,x).
The e.g.f. for the signed array is (1-t) * e^(-t) * e^(x*t).
From the Appell formalism, the row polynomials PI(n,x) of A073107 are the umbral inverse of this entry's row polynomials; that is, P(n,PI(.,x)) = x^n = PI(n,P(.,x)) under umbral composition. (End)
From Petros Hadjicostas, Nov 01 2019: (Start)
As a triangle, we let S(n,k) = T(n-k+1, k+1) = (n-k+1)*binomial(n, k) for n >= 0 and 0 <= k <= n. See the example below.
As stated above by Peter Bala, Sum_{n,k >= 0} S(n,k)*z^n*x^k = (1 - x*z)/(1 - z -x*z)^2.
Also, Sum_{n, k >= 0} S(n,k)*z^n*x^k/n! = (1+z)*exp((1+x)*z).
As he also states, the n-th row polynomial is R(n,x) = Sum_{k = 0..n} S(n, k)*x^k = (1 + x)^n + n*(1 + x)^(n-1).
If we define the signed triangle S*(n,k) = (-1)^(n+k) * S(n,k) = (-1)^(n+k) * T(n-k+1, k+1), as Tom Copeland states, Sum_{n,k >= 0} S^*(n,k)*t^n*x^k/n! = (1-t)*exp((1-x)*(-t)) = (1-t) * e^(-t) * e^(x*t).
Apparently, S*(n,k) = A103283(n,k).
As he says above, the signed n-th row polynomial is P(n,x) = (-1)^n*R(n,-x) = (x - 1)^n - n*(x - 1)^(n-1).
According to Gary W. Adamson, P(n,x) is "the monic characteristic polynomial of the n X n matrix with 2's on the diagonal and 1's elsewhere." (End)

A097070 Consider all compositions (ordered partitions) of n into n parts, allowing zeros. E.g., for n = 3 we get 300, 030, 003, 210, 120, 201, 102, 021, 012, 111. Then a(n) is the total number of 1's.

Original entry on oeis.org

1, 2, 9, 40, 175, 756, 3234, 13728, 57915, 243100, 1016158, 4232592, 17577014, 72804200, 300874500, 1240940160, 5109183315, 21002455980, 86213785350, 353452638000, 1447388552610, 5920836618840, 24197138082780, 98801168731200, 403095046038750, 1643337883690776, 6694900194799404
Offset: 1

Views

Author

Amy J. Kolan, Sep 15 2004

Keywords

Comments

Number of compositions of n into n parts, allowing zeros = binomial(2*n-1,n) = A088218 = essentially A001700.

Examples

			The compositions for n=2 are 20, 02, 11. There are two 1's in these so a(2) = 2.
From _Robert G. Wilson v_, Sep 16 2004: (Start)
The case n = 5:
A. There are 5 combinations associated with the numbers 50000: 50000, 05000, 00500, 00050, 00005.
B. There are 20 combinations associated with the numbers 41000.
C. There are 20 combinations associated with 32000.
D. There are 30 combinations associated with 31100.
E. There are 30 combinations associated with 22100.
F. There are 20 combinations associated with 21110.
G. There is one combinations associated with 11111.
The number of 1's associated with A is 0, with B 20, with C 0, with D 60, with E 30, with F 60 and with G 5. 0 + 20 + 0 + 60 + 30 + 60 + 5 = 175.
(End)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> n*Binomial(2*n-3, n-1)); # G. C. Greubel, Jul 27 2019
  • Magma
    [n*Binomial(2*n-3, n-1): n in [1..30]]; // Vincenzo Librandi, Jul 13 2019
    
  • Maple
    A097070 := n -> ifelse(n=1, 1, 2^(n-2)*JacobiP(n-1, -1/2, -n+2, 3)):
    seq(simplify(A097070(n)), n = 1..28);  # Peter Luschny, Jan 22 2025
  • Mathematica
    Table[n*Binomial[2n-3, n-1], {n, 30}] (* Robert G. Wilson v, Sep 17 2004 *)
  • PARI
    a(n) = n*binomial(2*n-3, n-1); \\ Joerg Arndt, Feb 17 2015
    
  • Sage
    [n*binomial(2*n-3, n-1) for n in (1..30)] # G. C. Greubel, Jul 27 2019
    

Formula

a(n) = n*binomial(2*n-3, n-1).
More generally, total number of k's (k>=0) in all ordered partitions of n into n parts, allowing zeros, is n*binomial(2*n-k-2, n-2) if n >= k, 0 otherwise.
Total number of 0's is given by A005430.
From Vladeta Jovovic, Sep 17 2004: (Start)
a(n) = Sum_{k=0..n} k*binomial(n, k)*binomial(n-2, k-2).
G.f.: x*(1 -2*x +(1-4*x)^(3/2))/(2*(1-4*x)^(3/2)).
E.g.f.: (x/2)*(exp(2*x)*BesselI(0, 2*x)+1). (End)
a(n) = A014107(n)*A000108(n-2). - Philippe Deléham, Apr 12 2007
a(n) = n*A088218(n-1) for n > 0. - Werner Schulte, Jan 22 2017
From Bruce J. Nicholson, Jul 11 2019: (Start)
a(n) = A002740(n) + A097613(n).
a(n) = A110609(n-1) - A002457(n-2) + A097613(n).
a(n) = A005430(n-1) - A000917(n-3) for n > 1.
a(n) = A002457(n-1) - A037965(n) - A000917(n-3) for n > 1.
a(n) = A037965(n)/2.
a(n) = A001700(n-2)*n.
a(n) = A001791(n-2)*n + A000984(n-2)*n for n > 1. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/(3*sqrt(3)) - Pi^2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)/sqrt(5) - 4*log(phi)^2, where phi is the golden ratio (A001622). (End)
a(n) = 2^(n-2)*JacobiP(n-1, -1/2, -n+2, 3) for n > 1. - Peter Luschny, Jan 22 2025

Extensions

Formula, more terms and comments from Vladeta Jovovic, Sep 15 2004

A167859 a(n) = 4^n * Sum_{k=0..n} binomial(2*k, k)^2 / 4^k.

Original entry on oeis.org

1, 8, 68, 672, 7588, 93856, 1229200, 16695424, 232418596, 3293578784, 47309094672, 686870685312, 10059942413584, 148412250014336, 2202990595617344, 32873407393419776, 492791264816231204
Offset: 0

Views

Author

Alexander Adamchuk, Nov 13 2009

Keywords

Comments

Every a(n) from a((p-1)/2) to a(p-1) is divisible by prime p for p = {7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, ...} = A167860, apparently a subset of primes of the form 8n+7 (A007522).
7^3 divides a(13) and 7^2 divides a(10)-a(13).
Every a(n) from a(kp-1 - (p-1)/2) to a(kp-1) is divisible by prime p from A167860.
Every a(n) from a((p^2-1)/2) to a(p^2-1) is divisible by prime p from A167860. For p=7 every a(n) from a((p^3-1)/2) to a(p^3-1) and from a((p^4-1)/2) to a(p^4-1)is divisible by p^2.

Crossrefs

Programs

  • Maple
    A167859 := proc(n)
        add( (binomial(2*k,k)/2^k)^2,k=0..n) ;
        4^n*% ;
    end proc:
    seq(A167859(n),n=0..20) ; # R. J. Mathar, Sep 21 2016
  • Mathematica
    Table[4^n*Sum[Binomial[2*k,k]^2/4^k,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    a(n) = 4^n*sum(k=0,n, binomial(2*k,k)^2/4^k) \\ Charles R Greathouse IV, Sep 21 2016

Formula

Recurrence: n^2*a(n) = 4*(5*n^2 - 4*n + 1)*a(n-1) - 16*(2*n - 1)^2*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: 2*EllipticK(4*sqrt(x))/(Pi*(1-4*x)), where EllipticK is the complete elliptic integral of the first kind, using the Gradshteyn and Ryzhik convention, also used by Maple. In the convention of Abramowitz and Stegun, used by Mathematica, this would be written as 2*K(16*x)/(Pi*(1-4*x)). - Robert Israel, Sep 21 2016

Extensions

More terms from Sean A. Irvine, Apr 14 2010
Further terms from Jon E. Schoenfield, May 09 2010

A331430 Triangle read by rows: T(n, k) = (-1)^(k+1)*binomial(n,k)*binomial(n+k,k) (n >= k >= 0).

Original entry on oeis.org

-1, -1, 2, -1, 6, -6, -1, 12, -30, 20, -1, 20, -90, 140, -70, -1, 30, -210, 560, -630, 252, -1, 42, -420, 1680, -3150, 2772, -924, -1, 56, -756, 4200, -11550, 16632, -12012, 3432, -1, 72, -1260, 9240, -34650, 72072, -84084, 51480, -12870, -1, 90, -1980, 18480, -90090, 252252, -420420, 411840, -218790, 48620, -1, 110, -2970, 34320, -210210, 756756, -1681680, 2333760, -1969110, 923780, -184756
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

This is Table I of Ser (1933), page 92.
From Petros Hadjicostas, Jul 09 2020: (Start)
Essentially Ser (1933) in his book (and in particular for Tables I-IV) finds triangular arrays that allow him to express the coefficients of various kinds of series in terms of the coefficients of other series.
He uses Newton's series (or some variation of it), factorial series, and inverse factorial series. Unfortunately, he uses unusual notation, and as a result it is difficult to understand what he is actually doing.
Rivoal (2008, 2009) essentially uses factorial series and transformations to other kinds of series to provide new proofs of the irrationality of log(2), zeta(2), and zeta(3). As a result, the triangular array T(n,k) appears in various parts of his papers.
We believe Table I (p. 92) in Ser (1933), regarding the numbers T(n,k), corresponds to four different formulas. We have deciphered the first two of them. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
  -1;
  -1,  2;
  -1,  6,   -6;
  -1, 12,  -30,   20;
  -1, 20,  -90,  140,    -70;
  -1, 30, -210,  560,   -630,   252;
  -1, 42, -420, 1680,  -3150,  2772,   -924;
  -1, 56, -756, 4200, -11550, 16632, -12012, 3432;
  ...
From _Petros Hadjicostas_, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92) is
  -1;
  -1/2, 1/2;
  -1/3, 1/2,   -1/6;
  -1/4, 9/20,  -1/4,  1/20;
  -1/5, 2/5,   -2/7,  1/10, -1/70;
  -1/6, 5/14, -25/84, 5/36, -1/28,  1/252;
  -1/7, 9/28, -25/84, 1/6,  -9/154,  1/84, -1/924;
   ... (End)
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, pp. 92-93.

Crossrefs

A063007 is the same triangle without the minus signs, and has much more information.
Columns 1 and 2 are A002378 and A033487; the last three diagonals are A002544, A002457, A000984.

Programs

  • Magma
    /* As triangle: */ [[(-1)^(k+1) * Factorial(n+k) / (Factorial(k) * Factorial(k) * Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 19 2020
    
  • Mathematica
    Table[CoefficientList[-Hypergeometric2F1[-n, n + 1, 1, x], x], {n, 0, 9}] // Flatten (* Georg Fischer, Jan 18 2020 after Peter Luschny in A063007 *)
  • SageMath
    def T(n,k): return (-1)^(k+1)*falling_factorial(n+k,2*k)/factorial(k)^2
    flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # Peter Luschny, Jul 09 2020

Formula

T(n,k) can also be written as (-1)^(k+1)*(n+k)!/(k!*k!*(n-k)!).
From Petros Hadjicostas, Jul 09 2020: (Start)
Ser's first formula from his Table I (p. 92) is the following:
Sum_{k=0..n} T(n,k)*k!/(x*(x+1)*...*(x+k)) = -(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, Sum_{k=0..n} T(n,k)/binomial(m+k, k) = 0 for m = 1..n.
Ser's second formula from his Table I appears also in Rivoal (2008, 2009) in a slightly different form:
Sum_{k=0..n} T(n,k)/(x + k) = (-1)^(n+1)*(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, for m = 1..n, Sum_{k=0..n} T(n,k)/(m + k) = 0. (End)
T(n,k) = (-1)^(k+1)*FallingFactorial(n+k,2*k)/(k!)^2. - Peter Luschny, Jul 09 2020
From Petros Hadjicostas, Jul 10 2020: (Start)
Peter Luschny's formula above is essentially the way the numbers T(n,k) appear in Eq. (7) on p. 86 of Ser's (1933) book. Eq. (7) is essentially equivalent to the first formula above (related to Table I on p. 92).
By inverting that formula (in some way), he gets
n!/(x*(x+1)*...*(x+n)) = Sum_{p=0..n} (-1)^p*(2*p+1)*f_p(n+1)*f_p(x), where f_p(x) = (x-1)*...*(x-p)/(x*(x+1)*...*(x+p)). This is equivalent to Eq. (8) on p. 86 of Ser's book.
The rational coefficients A(n,p) = (2*p+1)*f_p(n+1) = (2*p+1)*(n*(n-1)*...*(n+1-p))/((n+1)*...*(n+1+p)) appear in Table II on p. 92 of Ser's book.
If we consider the coefficients T(n,k) and (-1)^(p+1)*A(n,p) as infinite lower triangular matrices, then they are inverses of one another (see the example below). This means that, for m >= s,
Sum_{k=s..m} T(m,k)*(-1)^(s+1)*A(k,s) = I(s=m) = Sum_{k=s..m} (-1)^(k+1)*A(m,k)*T(k,s), where I(s=m) = 1, if s = m, and = 0, otherwise.
Without the (-1)^p, we get the formula
1/(x+n) = Sum_{p=0..n} (2*p+1)*f_p(n+1)*f_p(x),
which apparently is the inversion of the second of Ser's formulas (related to Table I on p. 92).
In all of the above formulas, an empty product is by definition 1, so f_0(x) = 1/x. (End)

Extensions

Thanks to Bob Selcoe, who noticed a typo in one of the entries, which, when corrected, led to an explicit formula for the whole of Ser's Table I.
Previous Showing 51-60 of 146 results. Next