cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002457 a(n) = (2n+1)!/n!^2.

Original entry on oeis.org

1, 6, 30, 140, 630, 2772, 12012, 51480, 218790, 923780, 3879876, 16224936, 67603900, 280816200, 1163381400, 4808643120, 19835652870, 81676217700, 335780006100, 1378465288200, 5651707681620, 23145088600920, 94684453367400, 386971244197200, 1580132580471900
Offset: 0

Views

Author

Keywords

Comments

Expected number of matches remaining in Banach's modified matchbox problem (counted when last match is drawn from one of the two boxes), multiplied by 4^(n-1). - Michael Steyer, Apr 13 2001
Hankel transform is (-1)^n*A014480(n). - Paul Barry, Apr 26 2009
Convolved with A000108: (1, 1, 1, 5, 14, 42, ...) = A000531: (1, 7, 38, 187, 874, ...). - Gary W. Adamson, May 14 2009
Convolution of A000302 and A000984. - Philippe Deléham, May 18 2009
1/a(n) is the integral of (x(1-x))^n on interval [0,1]. Apparently John Wallis computed these integrals for n=0,1,2,3,.... A004731, shifted left by one, gives numerators/denominators of related integrals (1-x^2)^n on interval [0,1]. - Marc van Leeuwen, Apr 14 2010
Extend the triangular peaks of Dyck paths of semilength n down to the baseline forming (possibly) larger and overlapping triangles. a(n) = sum of areas of these triangles. Also a(n) = triangular(n) * Catalan(n). - David Scambler, Nov 25 2010
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n of B equals a(n-1). - T. D. Noe, May 01 2011
Apparently the number of peaks in all symmetric Dyck paths with semilength 2n+1. - David Scambler, Apr 29 2013
Denominator of central elements of Leibniz's Harmonic Triangle A003506.
Central terms of triangle A116666. - Reinhard Zumkeller, Nov 02 2013
Number of distinct strings of length 2n+1 using n letters A, n letters B, and 1 letter C. - Hans Havermann, May 06 2014
Number of edges in the Hasse diagram of the poset of partitions in the n X n box ordered by containment (from Havermann's comment above, C represents the square added in the edge). - William J. Keith, Aug 18 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r then V(n, 1/2^n) = V(n-1, 1/2^n) / a((n-1)/2) for all odd n. - Peter Luschny, Oct 12 2015
a(n) is the result of processing the n+1 row of Pascal's triangle A007318 with the method of A067056. Example: Let n=3. Given the 4th row of Pascal's triangle 1,4,6,4,1, we get 1*(4+6+4+1) + (1+4)*(6+4+1) + (1+4+6)*(4+1) + (1+4+6+4)*1 = 15+55+55+15 = 140 = a(3). - J. M. Bergot, May 26 2017
a(n) is the number of (n+1) X 2 Young tableaux with a two horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021] and A000984 for one horizontal wall. - Michael Wallner, Jan 31 2022
a(n) is the number of facets of the symmetric edge polytope of the cycle graph on 2n+1 vertices. - Mariel Supina, May 12 2022
Diagonal of the rational function 1 / (1 - x - y)^2. - Ilya Gutkovskiy, Apr 23 2025

Examples

			G.f. = 1 + 6*x + 30*x^2 + 140*x^3 + 630*x^4 + 2772*x^5 + 12012*x^6 + 51480*x^7 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 159.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25; p. 168, #30.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
  • C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Wallis, Operum Mathematicorum, pars altera, Oxford, 1656, pp 31,34 [Marc van Leeuwen, Apr 14 2010]

Crossrefs

Cf. A000531 (Banach's original match problem).
Cf. A033876, A000984, A001803, A132818, A046521 (second column).
A diagonal of A331430.
The rightmost diagonal of the triangle A331431.

Programs

Formula

G.f.: (1-4x)^(-3/2) = 1F0(3/2;;4x).
a(n-1) = binomial(2*n, n)*n/2 = binomial(2*n-1, n)*n.
a(n-1) = 4^(n-1)*Sum_{i=0..n-1} binomial(n-1+i, i)*(n-i)/2^(n-1+i).
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n)*{1 + 3/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 21 2001
(2*n+2)!/(2*n!*(n+1)!) = (n+n+1)!/(n!*n!) = 1/beta(n+1, n+1) in A061928.
Sum_{i=0..n} i * binomial(n, i)^2 = n*binomial(2*n, n)/2. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = 1/Integral_{x=0..1} x^n (1-x)^n dx. - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 10 2003
E.g.f.: exp(2*x)*((1+4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 22 2003
a(n) = Sum_{i+j+k=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k). - Benoit Cloitre, Nov 09 2003
a(n) = (2*n+1)*A000984(n) = A005408(n)*A000984(n). - Zerinvary Lajos, Dec 12 2010
a(n-1) = Sum_{k=0..n} A039599(n,k)*A000217(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Sum of (n+1)-th row terms of triangle A132818. - Gary W. Adamson, Sep 02 2007
Sum_{n>=0} 1/a(n) = 2*Pi/3^(3/2). - Jaume Oliver Lafont, Mar 07 2009
a(n) = Sum_{k=0..n} binomial(2k,k)*4^(n-k). - Paul Barry, Apr 26 2009
a(n) = A000217(n) * A000108(n). - David Scambler, Nov 25 2010
a(n) = f(n, n-3) where f is given in A034261.
a(n) = A005430(n+1)/2 = A002011(n)/4.
a(n) = binomial(2n+2, 2) * binomial(2n, n) / binomial(n+1, 1), a(n) = binomial(n+1, 1) * binomial(2n+2, n+1) / binomial(2, 1) = binomial(2n+2, n+1) * (n+1)/2. - Rui Duarte, Oct 08 2011
G.f.: (G(0) - 1)/(4*x) where G(k) = 1 + 2*x*((2*k + 3)*G(k+1) - 1)/(k + 1). - Sergei N. Gladkovskii, Dec 03 2011 [Edited by Michael Somos, Dec 06 2013]
G.f.: 1 - 6*x/(G(0)+6*x) where G(k) = 1 + (4*x+1)*k - 6*x - (k+1)*(4*k-2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: Q(0), where Q(k) = 1 + 4*(2*k + 1)*x*(2*k + 2 + Q(k+1))/(k+1). - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Dec 06 2013]
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+3)/(4*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = 2^(4n)/Sum_{k=0..n} (-1)^k*C(2n+1,n-k)/(2k+1). - Mircea Merca, Nov 12 2013
a(n) = (2*n)!*[x^(2*n)] HeunC(0,0,-2,-1/4,7/4,4*x^2) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunC is the Heun confluent function. - Peter Luschny, Nov 22 2013
0 = a(n) * (16*a(n+1) - 2*a(n+2)) + a(n+1) * (a(n+2) - 6*a(n+1)) for all n in Z. - Michael Somos, Dec 06 2013
a(n) = 4^n*binomial(n+1/2, 1/2). - Peter Luschny, Apr 24 2014
a(n) = 4^n*hypergeom([-2*n,-2*n-1,1/2],[-2*n-2,1],2)*(n+1)*(2*n+1). - Peter Luschny, Sep 22 2014
a(n) = 4^n*hypergeom([-n,-1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = 2*4^n*Gamma(3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
Sum_{n >= 0} 2^(n+1)/a(n) = Pi, related to Newton/Euler's Pi convergence transformation series. - Tony Foster III, Jul 28 2016. See the Weisstein Pi link, eq. (23). - Wolfdieter Lang, Aug 26 2016
Boas-Buck recurrence: a(n) = (6/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, and a(0) = 1. Proof from a(n) = A046521(n+1,1). See comment in A046521. - Wolfdieter Lang, Aug 10 2017
a(n) = (1/3)*Sum_{i = 0..n+1} C(n+1,i)*C(n+1,2*n+1-i)*C(3*n+2-i,n+1) = (1/3)*Sum_{i = 0..2*n+1} (-1)^(i+1)*C(2*n+1,i)*C(n+i+1,i)^2. - Peter Bala, Feb 07 2018
a(n) = (2*n+1)*binomial(2*n, n). - Kolosov Petro, Apr 16 2018
a(n) = (-4)^n*binomial(-3/2, n). - Peter Luschny, Oct 23 2018
a(n) = 1 / Sum_{s=0..n} (-1)^s * binomial(n, s) / (n+s+1). - Kolosov Petro, Jan 22 2019
a(n) = Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
4^n/a(n) = Integral_{x=0..1} (1 - x^2)^n. - Michael Somos, Jun 13 2019
D-finite with recurrence: 0 = a(n)*(6 + 4*n) - a(n+1)*(n + 1) for all n in Z. - Michael Somos, Jun 13 2019
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)/sqrt(5). - Amiram Eldar, Sep 10 2020
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*arcsin(sqrt(x)/2) / sqrt(x*(4-x)).
E.g.f. for {1/a(n)}: exp(x/4)*sqrt(Pi/x)*erf(sqrt(x)/2). (End)
G.f. for {1/a(n)}: 4*arctan(sqrt(x/(4-x))) / sqrt(x*(4-x)). - Michael Somos, Jun 17 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k + 1)*binomial(n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (n + 2*k + 1) * binomial(n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+1)*n+1, n). Cf. A090816 and A306290. - Peter Bala, Nov 02 2024
a(n) = (1/Pi)*(2*n + 1)*(2^(2*n + 1))*Integral_{x=0..oo} 1/(x^2 + 1)^(n + 1) dx. - Velin Yanev, Jan 28 2025

A003506 Triangle of denominators in Leibniz's Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 30, 20, 5, 6, 30, 60, 60, 30, 6, 7, 42, 105, 140, 105, 42, 7, 8, 56, 168, 280, 280, 168, 56, 8, 9, 72, 252, 504, 630, 504, 252, 72, 9, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 11, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 11
Offset: 1

Views

Author

Keywords

Comments

Array 1/Beta(n,m) read by antidiagonals. - Michael Somos, Feb 05 2004
a(n,3) = A027480(n-2); a(n,4) = A033488(n-3). - Ross La Haye, Feb 13 2004
a(n,k) = total size of all of the elements of the family of k-size subsets of an n-element set. For example, a 2-element set, say, {1,2}, has 3 families of k-size subsets: one with 1 0-size element, one with 2 1-size elements and one with 1 2-size element; respectively, {{}}, {{1},{2}}, {{1,2}}. - Ross La Haye, Dec 31 2006
Second slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle, read by rows, given by [2,-1/2,1/2,0,0,0,0,0,0,...] DELTA [2,-1/2,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
This sequence * [1/1, 1/2, 1/3, ...] = (1, 3, 7, 15, 31, ...). - Gary W. Adamson, Nov 14 2007
n-th row = coefficients of first derivative of corresponding Pascal's triangle row. Example: x^4 + 4x^3 + 6x^2 + 4x + 1 becomes (4, 12, 12, 4). - Gary W. Adamson, Dec 27 2007
From Paul Curtz, Jun 03 2011: (Start)
Consider
1 1/2 1/3 1/4 1/5
-1/2 -1/6 -1/12 -1/20 -1/30
1/3 1/12 1/30 1/60 1/105
-1/4 -1/20 -1/60 -1/140 -1/280
1/5 1/30 1/105 1/280 1/630
This is an autosequence (the inverse binomial transform is the sequence signed) of the second kind: the main diagonal is 2 times the first upper diagonal.
Note that 2, 12, 60, ... = A005430(n+1), Apery numbers = 2*A002457(n). (End)
From Louis Conover (for the 9th grade G1c mathematics class at the Chengdu Confucius International School), Mar 02 2015: (Start)
The i-th order differences of n^-1 appear in the (i+1)th row.
1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, ...
1/2, 1/6, 1/12, 1/20, 1/30, 1/42, 1/56, 1/72, ...
1/3, 1/12, 1/30, 1/60, 1/105, 1/168, 1/252, 1/360, ...
1/4, 1/20, 1/60, 1/140, 1/280, 1/504, 1/840, 1/1320, ...
1/5, 1/30, 1/105, 1/280, 1/630, 1/1260, 1/2310, 1/3960, ...
1/6, 1/42, 1/168, 1/504, 1/1260, 1/2772, 1/5544, 1/12012, ...
(End)
T(n,k) is the number of edges of distance k from a fixed vertex in the n-dimensional hypercube. - Simon Burton, Nov 04 2022

Examples

			The triangle begins:
  1;
  1/2, 1/2;
  1/3, 1/6, 1/3;
  1/4, 1/12, 1/12, 1/4;
  1/5, 1/20, 1/30, 1/20, 1/5;
  ...
The triangle of denominators begins:
   1
   2   2
   3   6   3
   4  12  12    4
   5  20  30   20    5
   6  30  60   60   30    6
   7  42 105  140  105   42    7
   8  56 168  280  280  168   56    8
   9  72 252  504  630  504  252   72   9
  10  90 360  840 1260 1260  840  360  90  10
  11 110 495 1320 2310 2772 2310 1320 495 110 11
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, see 130.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 38.
  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
  • M. Elkadi and B. Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.

Crossrefs

Row sums are in A001787. Central column is A002457. Half-diagonal is in A090816. A116071, A215652.
Denominators of i-th order differences of n^-1 are given in: (1st) A002378, (2nd) A027480, (3rd) A033488, (4th) A174002, (5th) A253946. - Louis Conover, Mar 02 2015
Columns k >= 1 (offset 1): A000027, A002378, A027480, A033488, A174002, A253946(n+4), ..., with sum of reciprocals: infinity, 1, 1/2, 1/3, 1/4, 1/5, ..., respectively. - Wolfdieter Lang, Jul 20 2022

Programs

  • Haskell
    a003506 n k = a003506_tabl !! (n-1) !! (n-1)
    a003506_row n = a003506_tabl !! (n-1)
    a003506_tabl = scanl1 (\xs ys ->
       zipWith (+) (zipWith (+) ([0] ++ xs) (xs ++ [0])) ys) a007318_tabl
    a003506_list = concat a003506_tabl
    -- Reinhard Zumkeller, Nov 14 2013, Nov 17 2011
    
  • Maple
    with(combstruct):for n from 0 to 11 do seq(m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
    A003506 := (n,k) -> k*binomial(n,k):
    seq(print(seq(A003506(n,k),k=1..n)),n=1..7); # Peter Luschny, May 27 2011
  • Mathematica
    L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Flatten[ Table[ 1 / L[n, m], {n, 1, 12}, {m, 1, n}]], 66]
    t[n_, m_] = Gamma[n]/(Gamma[n - m]*Gamma[m]); Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}]; Flatten[%] (* Roger L. Bagula and Gary W. Adamson, Sep 14 2008 *)
    Table[k*Binomial[n,k],{n,1,7},{k,1,n}] (* Peter Luschny, May 27 2011 *)
    t[n_, k_] := Denominator[n!*k!/(n+k+1)!]; Table[t[n-k, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
  • PARI
    A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^(i-1)*(1-x)^(j-1)),x,1))
    
  • PARI
    A(i,j)=if(i<1||j<1,0,1/sum(k=0,i-1,(-1)^k*binomial(i-1,k)/(j+k)))
    
  • PARI
    {T(n, k) = (n + 1 - k) * binomial( n, k - 1)} /* Michael Somos, Feb 06 2011 */
    
  • SageMath
    T_row = lambda n: (n*(x+1)^(n-1)).list()
    for n in (1..10): print(T_row(n)) # Peter Luschny, Feb 04 2017
    # Assuming offset 0:
    def A003506(n, k):
        return falling_factorial(n+1,n)//(factorial(k)*factorial(n-k))
    for n in range(9): print([A003506(n, k) for k in range(n+1)]) # Peter Luschny, Aug 13 2022

Formula

a(n, 1) = 1/n; a(n, k) = a(n-1, k-1) - a(n, k-1) for k > 1.
Considering the integer values (rather than unit fractions): a(n, k) = k*C(n, k) = n*C(n-1, k-1) = a(n, k-1)*a(n-1, k-1)/(a(n, k-1) - a(n-1, k-1)) = a(n-1, k) + a(n-1, k-1)*k/(k-1) = (a(n-1, k) + a(n-1, k-1))*n/(n-1) = k*A007318(n, k) = n*A007318(n-1, k-1). Row sums of integers are n*2^(n-1) = A001787(n); row sums of the unit fractions are A003149(n-1)/A000142(n). - Henry Bottomley, Jul 22 2002
From Vladeta Jovovic, Nov 01 2003: (Start)
G.f.: x*y/(1-x-y*x)^2.
E.g.f.: x*y*exp(x+x*y). (End)
T(n,k) = n*binomial(n-1,k-1) = n*A007318(n-1,k-1). - Philippe Deléham, Aug 04 2006
Binomial transform of A128064(unsigned). - Gary W. Adamson, Aug 29 2007
From Roger L. Bagula and Gary W. Adamson, Sep 14 2008: (Start)
t(n,m) = Gamma(n)/(Gamma(n - m)*Gamma(m)).
f(s,n) = Integral_{x=0..oo} exp(-s*x)*x^n dx = Gamma(n)/s^n; t(n,m) = f(s,n)/(f(s,n-m)*f(s,m)) = Gamma(n)/(Gamma(n - m)*Gamma(m)); the powers of s cancel out. (End)
From Reinhard Zumkeller, Mar 05 2010: (Start)
T(n,5) = T(n,n-4) = A174002(n-4) for n > 4.
T(2*n,n) = T(2*n,n+1) = A005430(n). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(1,1) = 1 and, for n > 1, T(n,k) = 0 if k <= 1 or if k > n. - Philippe Deléham, Mar 17 2012
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,k+1-i). - Mircea Merca, Apr 11 2012
If we include a main diagonal of zeros so that the array is in the form
0
1 0
2 2 0
3 6 3 0
4 12 12 4 0
...
then we obtain the exponential Riordan array [x*exp(x),x], which factors as [x,x]*[exp(x),x] = A132440*A007318. This array is the infinitesimal generator for A116071. A signed version of the array is the infinitesimal generator for A215652. - Peter Bala, Sep 14 2012
a(n,k) = (n-1)!/((n-k)!(k-1)!) if k > n/2 and a(n,k) = (n-1)!/((n-k-1)!k!) otherwise. [Forms 'core' for Pascal's recurrence; gives common term of RHS of T(n,k) = T(n-1,k-1) + T(n-1,k)]. - Jon Perry, Oct 08 2013
Assuming offset 0: T(n, k) = FallingFactorial(n + 1, n) / (k! * (n - k)!). The counterpart using the rising factorial is A356546. - Peter Luschny, Aug 13 2022

Extensions

Edited by N. J. A. Sloane, Oct 07 2007

A090957 a(n) = 1/(Integral_{x=0..1} (x^4 - x^5)^n dx).

Original entry on oeis.org

1, 30, 495, 7280, 101745, 1381380, 18407025, 242082720, 3153092085, 40763504210, 523886186670, 6700599687600, 85360889543475, 1083790852008480, 13721016740550360, 173280964190422080, 2183615911571190525
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Feb 27 2004

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(5*n+1)/(Factorial(n)*Factorial(4*n)): n in [0..20]]; // G. C. Greubel, Feb 03 2019
    
  • Maple
    seq(factorial(5*n+1)/(factorial(n)*factorial(4*n)), n = 0 .. 16); # Emeric Deutsch, Jul 03 2009
  • Mathematica
    Table[1/Integrate[(x^4-x^5)^n,{x,0,1}],{n,0,20}] (* Harvey P. Dale, Jan 02 2013 *)
    Table[1/Beta[4*n+1,n+1], {n,0,20}] (* G. C. Greubel, Feb 03 2019 *)
  • PARI
    for (n = 0, 20, pol = (x^4 - x^5)^n; s = 0; for (i = 4*n, 5*n, s += polcoeff(pol, i)/(i + 1)); print(1/s)); \\ David Wasserman, Feb 22 2006
    
  • PARI
    vector(20, n, n--; (5*n+1)!/(n!*(4*n)!)) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [1/beta(4*n+1,n+1) for n in range(20)] # G. C. Greubel, Feb 03 2019

Formula

a(n) = 1/B(4*n+1,n+1) = (5*n+1)!/(n! * (4*n)!), where B(p,q) is Euler's beta function. - Emeric Deutsch, Jul 03 2009
a(n) ~ sqrt(n)*5^(5*n+3/2) / (sqrt(Pi)*2^(8*n+3/2)). - Vaclav Kotesovec, Aug 15 2017

Extensions

More terms from David Wasserman, Feb 22 2006

A090969 a(n) = 1/Integral_{x=0..1} (x^5 - x^6)^n.

Original entry on oeis.org

1, 42, 858, 15504, 265650, 4417686, 72068304, 1160068104, 18490100706, 292486494300, 4599035681526, 71963547329856, 1121519754006288, 17419158268943970, 269767427275060200, 4167406330765934256
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Feb 29 2004

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n+1)/(Factorial(n)*Factorial(5*n)): n in [0..20]]; // G. C. Greubel, Feb 03 2019
    
  • Maple
    seq(factorial(6*n+1)/(factorial(n)*factorial(5*n)), n = 0 .. 16); # Emeric Deutsch, Jun 29 2009
  • Mathematica
    Table[1/Beta[5*n+1, n+1], {n,0,20}] (* G. C. Greubel, Feb 03 2019 *)
  • PARI
    vector(20, n, n--; (6*n+1)!/(n!*(5*n)!)) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [1/beta(5*n+1,n+1) for n in range(20)] # G. C. Greubel, Feb 03 2019

Formula

a(n) = A016921(n)*A004355(n). - R. J. Mathar, Jun 21 2009
a(n) = 1/B(5*n+1,n+1) = (6*n+1)!/(n! * (5*n)!), where B(p,q) is Euler's beta function (basically identical with R. J. Mathar's comment). - Emeric Deutsch, Jun 29 2009
a(n) ~ 2^(6*n+1) * 3^(6*n+3/2) * sqrt(n) / (sqrt(Pi) * 5^(5*n+1/2)). - Vaclav Kotesovec, Aug 15 2017

Extensions

Extended by Emeric Deutsch, Jun 29 2009

A306290 a(n) = 1/(Integral_{x=0..1} (x^3 - x^4)^n dx).

Original entry on oeis.org

1, 20, 252, 2860, 30940, 325584, 3364900, 34337160, 347103900, 3483301360, 34754081648, 345120260940, 3413758188932, 33655718658800, 330869721936600, 3244839440755920, 31754250910172700, 310165459118369712, 3024542552887591120, 29449493278116018800, 286360607519186119920
Offset: 0

Views

Author

G. C. Greubel, Feb 03 2019

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n -> Factorial(4*n+1)/(Factorial(n)*Factorial(3*n)));
  • Magma
    [Factorial(4*n+1)/(Factorial(n)*Factorial(3*n)): n in [0..20]];
    
  • Mathematica
    Table[1/Beta[3*n+1, n+1], {n, 0, 20}]
  • PARI
    vector(20, n, n--; (4*n+1)!/(n!*(3*n)!))
    
  • Sage
    [1/beta(3*n+1,n+1) for n in range(20)]
    

Formula

a(n) = 1/Beta(3*n+1,n+1) = (4*n+1)!/(n! * (3*n)!).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (3*n + 2*k + 1)*binomial(3*n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (3*n + 2*k + 1) * binomial(3*n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+3)*n+1, 3*n). - Peter Bala, Nov 02 2024
From Amiram Eldar, Dec 09 2024: (Start)
a(n) = (4*n + 1) * binomial(4*n, n) = A016813(n) * A005810(n).
Formulas from Batir (2013):
Sum_{n>=0} 1/a(n) = f(c) = 1.05435362585114283076..., where f(x) = (x*(x^2-1)/(2*(2*x^2+1))) * log(abs((x+1)/(x-1))) + ((x-1)*(x^3+1)/(4*x*(2*x^2+1))) * sqrt(x/(x-2)) * (arctan(sqrt(x/(x-2))) + arctan(((3-x)/(x+1))*sqrt(x/(x-2)))) + ((x+1)*(x^3-1)/(4*x*(2*x^2+1))) * sqrt(x/(x+2)) * (arctan(((x+3)/(x-1))*sqrt(x/(x+2))) - arctan(sqrt(x/(x+2)))), and c = sqrt(1 + (16/sqrt(3))*cos(arctan(sqrt(229/27))/3)).
Sum_{n>=0} (-1)^n/a(n) = f(d) = 0.953648123517883351708..., where f(x) is defined above, and d = sqrt(1 + 16*(2/(3*(9+sqrt(849))))^(1/3) - 2*(2/3)^(2/3)*(9+sqrt(849))^(1/3)). (End)

A370258 Triangle read by rows: T(n, k) = binomial(n, k)*binomial(2*n+k, k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 21, 84, 84, 1, 36, 270, 660, 495, 1, 55, 660, 2860, 5005, 3003, 1, 78, 1365, 9100, 27300, 37128, 18564, 1, 105, 2520, 23800, 107100, 244188, 271320, 116280, 1, 136, 4284, 54264, 339150, 1139544, 2089164, 1961256, 735471, 1, 171, 6840, 111720, 921690, 4239774, 11306064
Offset: 0

Views

Author

Peter Bala, Feb 13 2024

Keywords

Comments

Compare with A063007(n, k) = binomial(n, k)*binomial(n+k, k), the table of coefficients of the shifted Legendre polynomials P(n, 2*x + 1).

Examples

			Triangle begins
n\k| 0    1     2      3       4       5       6       7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 0 | 1
 1 | 1    3
 2 | 1   10    15
 3 | 1   21    84     84
 4 | 1   36   270    660     495
 5 | 1   55   660   2860    5005    3003
 6 | 1   78  1365   9100   27300   37128   18564
 7 | 1  105  2520  23800  107100  244188  271320  116280
 ...
		

Crossrefs

A114496 (row sums), A000984 (alt. row sums unsigned), A005809 (main diagonal), A090763 (first subdiagonal), A014105 (column 1).

Programs

  • Maple
    seq(print(seq(binomial(n, k)*binomial(2*n+k, k), k = 0..n)), n = 0..10);

Formula

n-th row polynomial R(n, x) = Sum_{k = 0..n} binomial(n, k)*binomial(2*n+k, k)*x^k = (1 + x)^n * Sum_{k = 0..n} binomial(n, k)*binomial(2*n, k)*(x/(1 + x))^k = Sum_{k = 0..n} A110608(n, n-k)*x^k*(1 + x)^(n-k).
(x - 1)^n * R(n, 1/(x - 1)) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n, n-k)*x^k = the n-th row polynomial of A110608.
R(n, x) = hypergeom([-n, 2*n + 1], [1], -x).
Second-order differential equation: ( (1 + x)^n * (x + x^2)*R(n, x)' )' = n*(2*n + 1)*(1 + x)^n * R(n, x), where the prime indicates differentiation w.r.t. x.
Equivalently, x*(1 + x)*R(n, x)'' + ((n + 2)*x + 1)*R(n, x)' - n*(2*n + 1)*R(n, x)' = 0.
Analog of Rodrigues' formula for the shifted Legendre polynomials:
R(n, x) = 1/(1 + x)^n * 1/n! * (d/dx)^n (x*(1 + x)^2)^n.
Analog of Rodrigues' formula for the Legendre polynomials:
R(n, (x-1)/2) = 1/(n!*2^n) * 1/(1 + x)^n *(d/dx)^n ((x - 1)*(x + 1)^2)^n.
Orthogonality properties:
Integral_{x = -1..0} (1 + x)^n * R(n, x) * R(m, x) dx = 0 for n > m.
Integral_{x = -1..0} (1 + x)^n * R(n, x)^2 dx = 1/(3*n + 1).
Integral_{x = -1..0} (1 + x)^(n+m) * R(n, x) * R(m, x) dx = 0 for m >= 2*n + 1 or m <= (n - 1)/2.
Integral_{x = -1..0} (1 + x)^k * R(n, x) dx = 0 for n <= k <= 2*n - 1;
Integral_{x = -1..0} (1 + x)^(2*n) * R(n, x) dx = (2*n)!*n!/(3*n+1)! = 1/A090816(n).
Recurrence for row polynomials:
2*n*(2*n - 1)*((9*n - 12)*x + 8*n - 11)*(1 + x)*R(n, x) = (9*(3*n - 1)*(3*n - 2)*(3*n - 4)*x^3 + 3*(3*n - 1)*(3*n - 2)*(20*n - 27)*x^2 + 6*(3*n - 2)*(20*n^2 - 34*n + 9)*x + 2*(32*n^3 - 76*n^2 + 50*n - 9))*R(n-1, x) - 2*(n - 1)*(2*n - 3)*((9*n - 3)*x + 8*n - 3)*R(n-2, x), with R(0, x) = 1, R(1, x) = 1 + 3*x.
Conjecture: exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + 3*t)*x + (1 + 8*t + 12*t^2)*x^2 + ... is the o.g.f. for A102537. If true, then it would follows that, for each integer t, the sequence u = {R(n,t) : n >= 0} satisfies the Gauss congruences u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all primes p and positive integers m and r.
R(n, 1) = A114496(n); R(n, -1) = (-1)^n * A000984(n).
R(n, 2) = A339710(n); R(n, -2) = (-1)^n * A026000(n).
(2^n)*R(n, -1/2) = A234839(n).

A384261 a(n) = Product_{k=0..n-1} (2*n+k-1).

Original entry on oeis.org

1, 1, 12, 210, 5040, 154440, 5765760, 253955520, 12893126400, 741354768000, 47621141568000, 3379847863392000, 262662462526464000, 22183557976419840000, 2023140487449489408000, 198155371076302768128000, 20744817468539834621952000, 2311708772421640603275264000
Offset: 0

Views

Author

Seiichi Manyama, May 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 2*n+k-1);
    
  • Python
    from sympy import rf
    def a(n): return rf(2*n-1, n)
    
  • Sage
    def a(n): return rising_factorial(2*n-1, n)

Formula

a(n) = RisingFactorial(2*n-1,n).
a(n) = n! * [x^n] 1/(1 - x)^(2*n-1).
a(n) = n! * binomial(3*n-2,n).
D-finite with recurrence 2*(-2*n+3)*a(n) +3*(3*n-2)*(3*n-4)*a(n-1)=0. - R. J. Mathar, May 26 2025
Showing 1-7 of 7 results.