cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 275 results. Next

A022005 Initial members of prime triples (p, p+4, p+6).

Original entry on oeis.org

7, 13, 37, 67, 97, 103, 193, 223, 277, 307, 457, 613, 823, 853, 877, 1087, 1297, 1423, 1447, 1483, 1663, 1693, 1783, 1867, 1873, 1993, 2083, 2137, 2377, 2683, 2707, 2797, 3163, 3253, 3457, 3463, 3847, 4153, 4513, 4783, 5227, 5413, 5437, 5647, 5653, 5737, 6547
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A029710. - R. J. Mathar, May 06 2017
All terms are congruent to 1 (modulo 6). - Matt C. Anderson, May 22 2015

Crossrefs

Subsequence of A029710 and of A002476.
Subsequence of A007529.

Programs

A107008 Primes of the form x^2 + 24*y^2.

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Presumably this is the same as primes congruent to 1 mod 24, so a(n) = 24*A111174(n) + 1. - N. J. A. Sloane, Jul 11 2008. Checked for all terms up to 2 million. - Vladimir Joseph Stephan Orlovsky, May 18 2011.
Discriminant = -96.
Also primes of the forms x^2 + 48*y^2 and x^2 + 72*y^2. See A140633. - T. D. Noe, May 19 2008
Primes of the quadratic form are a subset of the primes congruent to 1 (mod 24). [Proof. For 0 <= x, y <= 23, the only values mod 24 that x^2 + 24*y^2 can take are 0, 1, 4, 9, 12 or 16. All of these r except 1 have gcd(r, 24) > 1 so if x^2 + 24*y^2 is prime its remainder mod 24 must be 1.] - David A. Corneth, Jun 08 2020
More advanced mathematics seems to be needed to determine whether this sequence lists all primes congruent to 1 (mod 24). Note the significance of 24 being a convenient number, as described in A000926. See also Sloane et al., Binary Quadratic Forms and OEIS, which explains how the table in A139642 may be used for this determination. - Peter Munn, Jun 21 2020
Primes == 1 (mod 2^3*3) are the intersection of the primes == 1 (mod 2^3) in A007519 and the primes == 1 (mod 3) in A002476, by the Chinese remainder theorem. - R. J. Mathar, Jun 11 2020

Crossrefs

Subset of A033199 (2y here = y there).
Is this the same as A141375?
See also the cross-references in A140633.

Programs

  • Mathematica
    QuadPrimes[1, 0, 24, 10000] (* see A106856 *)
  • PARI
    is(n) = isprime(n) && #qfbsolve(Qfb(1, 0, 24), n) == 2 \\ David A. Corneth, Jun 21 2020

Extensions

Recomputed b-file, deleted incorrect Mma program. - N. J. A. Sloane, Jun 08 2014

A024899 Numbers k such that 6*k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 21, 23, 25, 26, 27, 30, 32, 33, 35, 37, 38, 40, 45, 46, 47, 51, 52, 55, 56, 58, 61, 62, 63, 66, 68, 70, 72, 73, 76, 77, 81, 83, 87, 90, 91, 95, 96, 100, 101, 102, 103, 105, 107, 110, 112, 115, 118, 121, 122, 123, 125, 126, 128, 131, 135, 137
Offset: 1

Views

Author

Keywords

Comments

For all elements of this sequence there are no (x,y) positive integers such that a(n)=6*x*y+x+y or a(n)=6*x*y-x-y. - Pedro Caceres, Apr 19 2019

Crossrefs

A002476 gives primes, A091178 gives prime index.
Complement of A046954 relative to A000027.

Programs

  • Magma
    [n: n in [0..200]| IsPrime(6*n+1)] // Vincenzo Librandi, Nov 20 2010
    
  • Maple
    a := [ ]: for n from 0 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[Range@ 140, PrimeQ[6 # + 1] &] (* Michael De Vlieger, Jan 23 2018 *)
  • PARI
    select(n->n%6==1,primes(100))\6 \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A024892(n)/2 = (A034936(n)+1)/2. - Ray Chandler, Dec 26 2003
a(n) = (A002476(n)-1)/6. - Zak Seidov, Aug 31 2016

A092572 Numbers of the form x^2 + 3y^2 where x and y are positive integers.

Original entry on oeis.org

4, 7, 12, 13, 16, 19, 21, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 76, 79, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 124, 127, 129, 133, 139, 144, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1

Views

Author

Eric W. Weisstein, Feb 28 2004

Keywords

Comments

Superset of primes of the form 6n+1 (A002476).
It seems that all integer solutions of ((a+b)^3 - (a-b)^3) / (2*b) = c^3 have c = x^2 + 3*y^2. - Juergen Buchmueller (pullmoll(AT)t-online.de), Apr 04 2008
To prove the case of cubes in Fermat's last theorem, Euler considered numbers of the form a^2 + 3b^2. In the equation x^3 + y^3 = z^3, Euler specified that x = a - b and y = a + b. - Alonso del Arte, Jul 19 2012
All terms == 0,1,3,4, or 7 (mod 9). - Robert Israel, Apr 03 2017

Examples

			7 is of the specified form, since 2^2 + 3 * 1^2 = 7.
So is 12, since 3^2 + 3 * 1^2 = 12, and 13, with 1^2 + 3 * 2^2 = 13.
		

References

  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem. New York: Springer-Verlag (1979): 4.

Crossrefs

Cf. A002476, A092573, A092575, A158937 (similar definition but with duplicates left in).

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {seq(seq(x^2 + 3*y^2, x = 1 .. floor(sqrt(N - 3*y^2))),
      y=1..floor(sqrt(N/3-1)))}:
    sort(convert(S,list)); # Robert Israel, Apr 03 2017
  • Mathematica
    Union[Flatten[Table[a^2 + 3b^2, {a, 20}, {b, Ceiling[Sqrt[(400 - a^2)/3]]}]]] (* Alonso del Arte, Jul 19 2012 *)

A023203 Primes p such that p + 10 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967, 1009, 1021, 1039, 1051
Offset: 1

Views

Author

Keywords

Comments

A subset of A002476. It appears that this is also a subset of A007645. The first few terms of A007645 that are not in this sequence are {67, 109, 151, 193, 199, 211, 277, 313, 331, 367, 397, 463, 487, 523, 541, 571, 601, 613, ...}. - Alexander Adamchuk, Aug 15 2006
The entries are all in A007645, because they cannot be of the form p = 3*j + 2. If they were, p + 10 = 3*j + 12 would be divisible by 3 and not prime. - R. J. Mathar, Oct 30 2009

Crossrefs

Different from A015916. Cf. A031928, A079033.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(n+10)]; // Vincenzo Librandi, Nov 20 2010
    
  • Maple
    for p from 1 to 10000 do if isprime(p) and isprime(p+10) then print(p) end if end do # Matt C. Anderson, Aug 26 2022
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 10] &] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    is(n)=isprime(n)&&isprime(n+10) \\ Charles R Greathouse IV, Jul 01 2013

Extensions

Revised by N. J. A. Sloane, Jan 29 2013
New name from Michel Marcus, Mar 04 2020

A039701 a(n) = n-th prime modulo 3.

Original entry on oeis.org

2, 0, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

If n > 2 and prime(n) is a Mersenne prime then a(n) = 1. Proof: prime(n) = 2^p - 1 for some odd prime p, so prime(n) = 2*4^((p-1)/2) - 1 == 2 - 1 = 1 (mod 3). - Santi Spadaro, May 03 2002; corrected and simplified by Dean Hickerson, Apr 20 2003
Except for n = 2, a(n) is the smallest number k > 0 such that 3 divides prime(n)^k - 1. - T. D. Noe, Apr 17 2003
a(n) <> 0 for n <> 2; a(A049084(A003627(n))) = 2; a(A049084(A002476(n))) = 1; A134323(n) = (1 - 0^a(n)) * (-1)^(a(n)+1). - Reinhard Zumkeller, Oct 21 2007
Probability of finding 1 (or 2) in this sequence is 1/2. This follows from the Prime Number Theorem in arithmetic progressions. Examples: There are 4995 1's in terms (10^9 +1) to (10^9+10^4); there are 10^9/2-1926 1's in the first 10^9 terms. - Jerzy R Borysowicz, Mar 06 2022

Crossrefs

Cf. A091178 (indices of 1's), A091177 (indices of 2's).
Cf. A120326 (partial sums).
Cf. A010872.

Programs

Formula

Sum_k={1..n} a(k) ~ (3/2)*n. - Amiram Eldar, Dec 11 2024

A004611 Divisible only by primes congruent to 1 mod 3.

Original entry on oeis.org

1, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 127, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457
Offset: 1

Views

Author

Keywords

Comments

In other words, if a prime p divides n, then p == 1 mod 3.
Equivalently, products of primes == 1 (mod 6), products of elements of A002476.
Positive integers n such that n+d+1 is divisible by 3 for all divisors d of n. For example, a(13)=91 since 91=7*13, 91+1+1=93=3*31, 91+7+1=99=9*11, 91+13+1=105=3*7*5, 91+91+1=183=3*61. The only prime p such that x+d+1 is divisible by p for all divisors d of x is p=3. The sequence consists of 1 and all integers whose prime divisors are of the form 6k+1. - Walter Kehowski, Aug 09 2006
Also z such that z^2 = x^2 + x*y + y^2 and gcd(x,y,z) = 1. - Frank M Jackson, Jul 30 2013
From Jean-Christophe Hervé, Nov 24 2013: (Start)
Apart from the first term (for all in this comment), this sequence is the analog of A008846 (hypotenuses of primitive Pythagorean triangles) for triangles with integer sides and a 120-degree angle: a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles.
Not only the square of these numbers is equal to x^2 + xy + y^2 with x and y > 0, but the numbers themselves also are; the sequence starting at n=2 is then a subsequence of A024606.
(End)
Numbers n such that 3/n cannot be written as the sum of 2 unit fractions. - Carl Schildkraut, Jul 19 2016
a(n), n>1, is the sequence of lengths of the middle side b of the primitive triangles such that A < B < C with an angle B = 60 degrees (A335895). Compare with comment of Nov 24 2013 where a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles that have an angle = 120 degrees. - Bernard Schott, Mar 29 2021

Crossrefs

Multiplicative closure of A002476.

Programs

  • Magma
    [n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 3 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    with(numtheory): for n from 1 to 1801 by 6 do it1 := ifactors(n)[2]: it2 := 1: for i from 1 to nops(it1) do if it1[i][1] mod 6 > 1 then it2 := 0; break fi: od: if it2=1 then printf(`%d,`,n) fi: od:
    with(numtheory): cnt:=0: L:=[]: for w to 1 do for n from 1 while cnt<100 do dn:=divisors(n); Q:=map(z-> n+z+1, dn); if andmap(z-> z mod 3 = 0, Q) then cnt:=cnt+1; L:=[op(L),[cnt,n]]; fi; od od; L; # Walter Kehowski, Aug 09 2006
  • Mathematica
    ok[1]=True;ok[n_]:=And@@(Mod[#,3]==1&)/@FactorInteger[n][[All,1]];Select[Range[500],ok] (* Vincenzo Librandi, Aug 21 2012 *)
    lst={}; maxLen=331; Do[If[Reduce[m^2+m*n+n^2==k^2&&m>=n>=0&&GCD[k, m, n]==1, {m, n}, Integers]===False, Null[], AppendTo[lst, k]], {k, maxLen}]; lst (* Frank M Jackson, Jul 04 2013 from A034017 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);for(i=1,#f,if(f[i]%3!=1,return(0)));1 \\ Charles R Greathouse IV, Feb 06 2013
    
  • PARI
    list(lim)=my(v=List([1]), mn, mx, t); forprime(p=7, lim\=1, if(p%6==1, listput(v, p))); if(lim<49, return(Vec(v))); forprime(p=7, sqrtint(lim), if(p%6>1, next); mx=1; while(v[mx+1]*p<=lim, for(i=mn=mx+1, mx=#v, t=p*v[i]; if(t>lim, break); listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Jan 11 2018

Extensions

More terms from James Sellers, Oct 30 2000
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A175646 Decimal expansion of the Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 3, 4, 0, 1, 4, 8, 7, 5, 4, 1, 4, 3, 4, 1, 8, 8, 0, 5, 3, 9, 0, 3, 0, 6, 4, 4, 4, 1, 3, 0, 4, 7, 6, 2, 8, 5, 7, 8, 9, 6, 5, 4, 2, 8, 4, 8, 9, 0, 9, 9, 8, 8, 6, 4, 1, 6, 8, 2, 5, 0, 3, 8, 4, 2, 1, 2, 2, 2, 2, 4, 5, 8, 7, 1, 0, 9, 6, 3, 5, 8, 0, 4, 9, 6, 2, 1, 7, 0, 7, 9, 8, 2, 6, 2, 0, 5, 9, 6, 2, 8, 9, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Euler product of the Riemann zeta function at 2 restricted to primes in A002476, which is the inverse of the infinite product (1-1/7^2)*(1-1/13^2)*(1-1/19^2)*...
There is a complementary Product_{primes p == 2 (mod 3)} 1/(1-1/p^2) = A333240 = 1.4140643908921476375655018190798... such that (this constant here)*1.4140643.../(1-1/3^2) = zeta(2) = A013661.
Because 1/(1-p^(-2)) = 1+1/(p^2-1), the complementary 1.414064... also equals Product_{primes p == 2 (mod 3)} (1+1/(p^2-1)), which appears in Eq. (1.8) of [Dence and Pomerance]. - R. J. Mathar, Jan 31 2013

Examples

			1.03401487541434188053903064441304762857896...
		

Crossrefs

Programs

  • Maple
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n) / 3:
    evalf(4*Pi^2 / (27*mul(x(n), n=1..8)), 106); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pA = Pi^2/9/pB ;
    RealDigits[pA, 10, digits][[1]]
    (* Jean-François Alcover, Jan 11 2021, after PARI code due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[3,1,2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
    z[n_] := Zeta[n] / Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n) / 3;
    N[4 Pi^2 / (27 Product[x[n], {n, 8}]), 106] (* Peter Luschny, Jan 17 2021 *)

Formula

Equals 2*Pi^2 / (3^(7/2) * A301429^2). - Vaclav Kotesovec, May 12 2020
Equals Sum_{k>=1} 1/A004611(k)^2. - Amiram Eldar, Sep 27 2020

Extensions

More digits from Vaclav Kotesovec, May 12 2020 and Jun 27 2020

A057204 Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.

Original entry on oeis.org

7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014

Examples

			a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+3][[All,1]],Mod[#,6]==1 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    Q=1;for(n=1,11,f=factor(4*Q^2+3);for(i=1,#f~,p=f[i,1];if(p%6==1,break));print1(p", ");Q*=p) \\ Jens Kruse Andersen, Jun 30 2014

Extensions

More terms from Nick Hobson, Nov 14 2006
More terms from Sean A. Irvine, Oct 23 2014

A055664 Norms of Eisenstein-Jacobi primes.

Original entry on oeis.org

3, 4, 7, 13, 19, 25, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 121, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 289, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 529, 541, 547, 571
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the norms of the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
Let us say that an integer n divides a lattice if there exists a sublattice of index n. Example: 3 divides the hexagonal lattice. Then A003136 (Loeschian numbers) is the sequence of divisors of the hexagonal lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the prime divisors of the hexagonal lattice. Similarly, A055025 (Norms of Gaussian primes) is the sequence of "prime divisors" of the square lattice. - Jean-Christophe Hervé, Dec 04 2006

Examples

			There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

Crossrefs

Cf. A055665-A055668, A055025-A055029, A135461, A135462. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
The Z[sqrt(-5)] analogs are in A020669, A091727, A091728, A091729, A091730 and A091731.

Programs

  • Mathematica
    Join[{3}, Select[Range[600], (PrimeQ[#] && Mod[#, 6] == 1) || (PrimeQ[Sqrt[#]] && Mod[Sqrt[#], 3] == 2) & ]] (* Jean-François Alcover, Oct 09 2012, from formula *)
  • PARI
    is(n)=(isprime(n) && n%3<2) || (issquare(n,&n) && isprime(n) && n%3==2) \\ Charles R Greathouse IV, Apr 30 2013

Formula

Consists of 3; rational primes == 1 (mod 3) [A002476]; and squares of rational primes == -1 (mod 3) [A003627^2].

Extensions

More terms from David Wasserman, Mar 21 2002
Previous Showing 41-50 of 275 results. Next