A053123 Triangle of coefficients of shifted Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in decreasing order).
1, 1, -2, 1, -4, 3, 1, -6, 10, -4, 1, -8, 21, -20, 5, 1, -10, 36, -56, 35, -6, 1, -12, 55, -120, 126, -56, 7, 1, -14, 78, -220, 330, -252, 84, -8, 1, -16, 105, -364, 715, -792, 462, -120, 9, 1, -18, 136, -560, 1365, -2002, 1716, -792, 165, -10, 1, -20, 171, -816, 2380, -4368, 5005, -3432, 1287, -220, 11, 1
Offset: 0
Examples
Triangle begins: 1; 1, -2; 1, -4, 3; 1, -6, 10, -4; 1, -8, 21, -20, 5; 1, -10, 36, -56, 35, -6; 1, -12, 55, -120, 126, -56, 7; ... E.g. fourth row (n=3) {1,-6,10,-4} corresponds to polynomial S(3,x-2) = x^3-6*x^2+10*x-4.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Stephen Barnett, "Matrices: Methods and Applications", Oxford University Press, 1990, p. 132, 343.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> (-1)^k*Binomial(2*n-k+1,k) ))); # G. C. Greubel, Jul 23 2019
-
Magma
[(-1)^k*Binomial(2*n-k+1,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 23 2019
-
Maple
A053123 := proc(n,m) (-1)^m*binomial(2*n+1-m,m) ; end proc: # R. J. Mathar, Sep 08 2013
-
Mathematica
T[n_, m_]:= (-1)^m*Binomial[2*n+1-m, m]; Table[T[n, m], {n, 0, 11}, {m, 0, n}]//Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)
-
PARI
for(n=0,10, for(k=0,n, print1((-1)^k*binomial(2*n-k+1,k), ", "))) \\ G. C. Greubel, Jul 23 2019
-
Sage
[[(-1)^k*binomial(2*n-k+1,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 23 2019
Formula
T(n, m) = 0 if n
T(n, m) = -2*T(n-1, m-1) + T(n-1, m) - T(n-2, m-2), T(n, -2) = 0, T(-2, m) = 0, T(n, -1) = 0 = T(-1, m), T(0, 0) = 1, T(n, m) = 0 if n
G.f. for m-th column (signed triangle): ((-1)^m)*x^m*Po(m+1, x)/(1-x)^(m+1), with Po(k, x) := Sum_{j=0..floor(k/2)} binomial(k, 2*j+1)*x^j.
The n-th degree polynomial is the characteristic equation for an n X n tridiagonal matrix with (diagonal = all 2's, sub and superdiagonals all -1's and the rest 0's), exemplified by the 4X4 matrix M = [2 -1 0 0 / -1 2 -1 0 / 0 -1 2 -1 / 0 0 -1 2]. - Gary W. Adamson, Jan 05 2005
Sum_{m=0..n} T(n,m)*(c(n))^(2*n-2*m) = 1/c(n), where c(n) = 2*cos(Pi/(2*n+3)). - L. Edson Jeffery, Sep 13 2013
A053126 Binomial coefficients binomial(2*n-3,4).
5, 35, 126, 330, 715, 1365, 2380, 3876, 5985, 8855, 12650, 17550, 23751, 31465, 40920, 52360, 66045, 82251, 101270, 123410, 148995, 178365, 211876, 249900, 292825, 341055, 395010, 455126, 521855, 595665, 677040, 766480
Offset: 4
Comments
Number of intersections of diagonals in the interior of regular (2n-3)-gon. - Philippe Deléham, Jun 07 2013
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[Binomial(2*n-3,4): n in [4..40]]; // Vincenzo Librandi, Oct 07 2011
-
Mathematica
Table[Binomial[2*n-3,4], {n,4,50}] (* G. C. Greubel, Aug 26 2018 *)
-
PARI
for(n=4,50, print1(binomial(2*n-3,4), ", ")) \\ G. C. Greubel, Aug 26 2018
Formula
a(n) = binomial(2*n-3, 4) if n >= 4 else 0;
G.f.: (5+10*x+x^2)/(1-x)^5.
a(n) = A053123(n,4), n >= 4; a(n) = 0, n=0..3 (fifth column of shifted Chebyshev's S-triangle, decreasing order).
a(n) = A006561(2n-3). - Philippe Deléham, Jun 07 2013
E.g.f.: (90 - 84*x + 39*x^2 - 12*x^3 + 4*x^4)*exp(x)/6. - G. C. Greubel, Aug 26 2018
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=4} 1/a(n) = 34/3 - 16*log(2).
Sum_{n>=4} (-1)^n/a(n) = 2*Pi - 4*log(2) - 10/3. (End)
A035006 Number of possible rook moves on an n X n chessboard.
0, 8, 36, 96, 200, 360, 588, 896, 1296, 1800, 2420, 3168, 4056, 5096, 6300, 7680, 9248, 11016, 12996, 15200, 17640, 20328, 23276, 26496, 30000, 33800, 37908, 42336, 47096, 52200, 57660, 63488, 69696, 76296, 83300, 90720, 98568, 106856
Offset: 1
Comments
Obviously A035005(n) = A002492(n-1) + a(n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
X values of solutions of the equation: (X-Y)^3-2*X*Y=0. Y values are b(n)=2*n*(n-1)^2 (see A181617). - Mohamed Bouhamida, Jul 06 2023
Examples
On a 3 X 3-board, rook has 9*4 moves, so a(3)=36.
References
- E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Alexander M. Haupt, Bijective enumeration of rook walks, arXiv:2007.01018 [math.CO], 2020.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Richard P. Stanley, Bijective Proof Problems, Problem 540 p. 63, (2015).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n-1)*2*n^2: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[(n-1) 2 n^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,36,96},40] (* Harvey P. Dale, May 12 2012 *)
Formula
a(n) = (n-1)*2*n^2.
a(n) = Sum_{j=1..n} ((n+j-1)^2 - (n-j+1)^2). - Zerinvary Lajos, Sep 13 2006
1/a(n+1) = Integral_{x=1/(n+1)..1/n} x*h(x) = Integral_{x=1/(n+1)..1/n} x*(1/x - floor(1/x)) = 1/((2*(n^2+2*n+1))*n) and Sum_{n>=1} 1/((2*(n^2+2*n+1))*n) = 1-Zeta(2)/2 where h(x) is the Gauss (continued fraction) map h(x)={x^-1} and {x} is the fractional part of x. - Stephen Crowley, Jul 24 2009
a(n) = 4 * A006002(n-1). - Johannes W. Meijer, Feb 04 2010
G.f.: 4*x^2*(2+x)/(1-x)^4. - Colin Barker, Mar 11 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=0, a(2)=8, a(3)=36, a(4)=96. - Harvey P. Dale, May 12 2012
E.g.f.: 2*exp(x)*x^2*(2 + x). - Stefano Spezia, May 10 2022
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = 1 - Pi^2/12.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 + log(2) - 1. (End)
A202076 T(n,k)=Number of arrays of n+2 integers in -k..k with sum zero and the sum of every adjacent pair being odd.
2, 4, 4, 10, 20, 2, 14, 56, 26, 0, 24, 120, 78, 0, 6, 30, 220, 264, 0, 96, 12, 44, 364, 504, 0, 1014, 524, 6, 52, 560, 1128, 0, 3752, 5832, 726, 0, 70, 816, 1786, 0, 15010, 34632, 8412, 0, 20, 80, 1140, 3262, 0, 35604, 142692, 80812, 0, 2760, 40, 102, 1540, 4660, 0, 95342
Offset: 1
Comments
Table starts
..2.....4.....10.......14........24........30.........44..........52
..4....20.....56......120.......220.......364........560.........816
..2....26.....78......264.......504......1128.......1786........3262
..0.....0......0........0.........0.........0..........0...........0
..6....96...1014.....3752.....15010.....35604......95342......181834
.12...524...5832....34632....142692....462436....1264272.....3044496
..6...726...8412....80812....340660...1516410....4213042....12861252
..0.....0......0........0.........0.........0..........0...........0
.20..2760.118560..1201220..10924220..50331332..241384794...755963886
.40.15560.691352.11395632.105606040.670671976.3259289000.12973320840
Examples
Some solutions for n=3 k=3 ..0....0....0....2....2....0....2....2....0....0....0...-2....2....0...-2...-2 ..1...-1....3....1...-1....1....1...-1....1...-1...-1....3...-3...-3....3....3 .-2...-2...-2...-2....0....2....0....0....0....2....0...-2....2....2...-2....0 ..1....1...-3...-3....1...-3...-1...-3...-3...-1....3....3...-3...-1...-1...-3 ..0....2....2....2...-2....0...-2....2....2....0...-2...-2....2....2....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
A128908 Riordan array (1, x/(1-x)^2).
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0
Comments
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 0 1 2: 0 2 1 3: 0 3 4 1 4: 0 4 10 6 1 5: 0 5 20 21 8 1 6: 0 6 35 56 36 10 1 7: 0 7 56 126 120 55 12 1 8: 0 8 84 252 330 220 78 14 1 9: 0 9 120 462 792 715 364 105 16 1 10: 0 10 165 792 1716 2002 1365 560 136 18 1 ... reformatted by _Wolfdieter Lang_, Jul 31 2017 From _Peter Luschny_, Mar 06 2022: (Start) The sequence can also be seen as a square array read by upwards antidiagonals. 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 0, 2, 4, 6, 8, 10, 12, 14, 16, ... A005843 0, 3, 10, 21, 36, 55, 78, 105, 136, ... A014105 0, 4, 20, 56, 120, 220, 364, 560, 816, ... A002492 0, 5, 35, 126, 330, 715, 1365, 2380, 3876, ... (A053126) 0, 6, 56, 252, 792, 2002, 4368, 8568, 15504, ... (A053127) 0, 7, 84, 462, 1716, 5005, 12376, 27132, 54264, ... (A053128) 0, 8, 120, 792, 3432, 11440, 31824, 77520, 170544, ... (A053129) 0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130) A27,A292, A389, A580, A582, A1288, A10966, A10968, A165817 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv:1110.6620 [math.RT], 2014.
Crossrefs
Programs
-
Maple
# Computing the rows of the array representation: S := proc(n,k) option remember; if n = k then 1 elif k < 0 or k > n then 0 else S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end: Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1): for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022 # Uses function PMatrix from A357368. PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
-
Mathematica
With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
-
Python
from functools import cache @cache def A128908(n, k): if n == k: return 1 if (k <= 0 or k > n): return 0 return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k) for n in range(10): print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
-
Sage
@cached_function def T(k,n): if k==n: return 1 if k==0: return 0 return sum(i*T(k-1,n-i) for i in (1..n-k+1)) A128908 = lambda n,k: T(k,n) for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
Formula
T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012
A166464 a(n) = (3 + 2*n + 6*n^2 + 4*n^3)/3.
1, 5, 21, 57, 121, 221, 365, 561, 817, 1141, 1541, 2025, 2601, 3277, 4061, 4961, 5985, 7141, 8437, 9881, 11481, 13245, 15181, 17297, 19601, 22101, 24805, 27721, 30857, 34221, 37821, 41665, 45761, 50117, 54741, 59641, 64825, 70301, 76077, 82161, 88561, 95285, 102341, 109737, 117481, 125581
Offset: 0
Comments
Atomic number of first transition metal of period 2n (n>3) or of the element after n-th alkaline earth metal. This can be calculated by finding the sum of the first n even squares plus 1. - Natan Arie Consigli, Jul 03 2016
References
- JANET,Charles, La structure du Noyau de l'atome,consideree dans la Classification periodique,des elements chimiques,1927 (Novembre),N. 2,BEAUVAIS,67 pages,3 leaflets.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(3+2*n+6*n^2+4*n^3)/3: n in [0..60]]; // G. C. Greubel, Jul 27 2024
-
Mathematica
Table[(3+2*n+6*n^2+4*n^3)/3, {n,0,60}] (* G. C. Greubel, May 15 2016 *)
-
PARI
a(n)=(3+2*n+6*n^2+4*n^3)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[(3+2*n+6*n^2+4*n^3)//3 for n in range(61)] # G. C. Greubel, Jul 27 2024
Formula
a(n) - a(n-1) = 4*(n+1)^2 = A016742(n+1).
a(n) - 2*a(n-1) + a(n-2) = -4 + 8*n = A017113(n+1).
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8 = A010731(n).
a(n) - 4*a(n-1) + 6*a(n-2) - 4*a(n-3) + a(n-4) = 0.
Binomial transform of quasi-finite sequence 1,4,12,8,0,(0 continued).
G.f.: (1+x+7*x^2-x^3)/(1-x)^4. - R. J. Mathar, Feb 15 2010
From Natan Arie Consigli, Jul 03 2016: (Start)
a(n) = A018227(2*n) + 3.
a(n) = A002492(n) + 1. (End)
E.g.f.: (1/3)*(3 + 12*x + 18*x^2 + 4*x^3)*exp(x). - G. C. Greubel, Jul 27 2024
Extensions
Edited by N. J. A. Sloane, Oct 17 2009
More terms a(11)-a(35) from Vincenzo Librandi, Oct 17 2009
A035005 Number of possible queen moves on an n X n chessboard.
0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360
Offset: 1
Comments
The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005
Examples
3 X 3 board: queen has 8*6 moves and 1*8 moves, so a(3)=56.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[(n-1)2n^2+(4n^3-6n^2+2n)/3,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,12,56,152},40] (* Harvey P. Dale, Aug 24 2011 *)
Formula
a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3.
From Johannes W. Meijer, Feb 04 2010: (Start)
a(n) = 4 * A162147(n-1). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=12, a(2)=56, a(3)=152. - Harvey P. Dale, Aug 24 2011
From Colin Barker, Mar 11 2012: (Start)
a(n) = 2*n*(1-6*n+5*n^2)/3.
G.f.: 4*x^2*(3+2*x)/(1-x)^4. (End)
E.g.f.: 2*exp(x)*x^2*(9 + 5*x)/3. - Stefano Spezia, Jul 31 2022
Extensions
More terms from Erich Friedman
A112742 a(n) = n^2*(n^2 - 1)/3.
0, 0, 4, 24, 80, 200, 420, 784, 1344, 2160, 3300, 4840, 6864, 9464, 12740, 16800, 21760, 27744, 34884, 43320, 53200, 64680, 77924, 93104, 110400, 130000, 152100, 176904, 204624, 235480, 269700, 307520, 349184, 394944, 445060, 499800, 559440
Offset: 0
Comments
Second derivative of the n-th Chebyshev polynomial (of the first kind) evaluated at x=1.
The second derivative at x=-1 is just (-1)^n * a(n).
The difference between two consecutive terms generates the sequence a(n+1) - a(n) = A002492(n).
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, |q-p| and |q-p|. - Wesley Ivan Hurt, Apr 15 2018
Examples
a(4)=80 because C_4(x) = 1 - 8x^2 + 8x^4, C'_4(x) = -16x + 32x^3, C''_4(x) = -16 + 96x^2, C''_4(1) = -16 + 96 = 80.
Links
- Eric Weisstein's World of Mathematics, Chebyshev polynomials of the first kind
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[D[ChebyshevT[n, x], {x, 2}], {n, 0, 100}] /. x -> 1
-
PARI
a(n)=n^2*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (n-1)*n^2*(n+1)/3 = 4*A002415(n).
a(n) = 2*( A000914(n-1) + C(n+1,4) ). - David Scambler, Nov 27 2006
From Colin Barker, Jan 26 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*x^2*(1+x)/(1-x)^5. (End)
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/3. - Stefano Spezia, Dec 11 2021
A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0
Comments
Riordan array ((1-x)/(1-2x),x/(1-2x)).
T(n,k) is the number of ways to place n unlabeled objects into any number of labeled bins (with at least one object in each bin) and then designate k of the bins. - Geoffrey Critzer, Nov 18 2012
Apparently, rows of this array are unsigned diagonals of A028297. - Tom Copeland, Oct 11 2014
Unsigned A118800, so my conjecture above is true. - Tom Copeland, Nov 14 2016
Examples
Triangle begins: 1 1, 1 2, 3, 1 4, 8, 5, 1 8, 20, 18, 7, 1 16, 48, 56, 32, 9, 1 32, 112, 160, 120, 50, 11, 1
Crossrefs
Programs
-
Mathematica
nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Nov 18 2012 *)
Formula
T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)/(1-(2+y)*x).
T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - Tom Copeland, Nov 15 2016
T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - Tom Copeland, Nov 17 2016
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 24 2018
A062344 Triangle of binomial(2*n, k) with n >= k.
1, 1, 2, 1, 4, 6, 1, 6, 15, 20, 1, 8, 28, 56, 70, 1, 10, 45, 120, 210, 252, 1, 12, 66, 220, 495, 792, 924, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620
Offset: 0
Comments
From Wolfdieter Lang, Sep 19 2012: (Start)
The triangle a(n,k) appears in the formula F(2*l+1)^(2*n) = (sum(a(n,k)*L(2*(n-k)*(2*l+1)),k=0..n-1) + a(n,n))/5^n, n>=0, l>=0, with F=A000045 (Fibonacci) and L=A000032 (Lucas).
The signed triangle as(n,k):=a(n,k)*(-1)^k appears in the formula F(2*l)^(2*n) = (sum(as(n,k)*L(4*(n-k)*l),k=0..n-1) + as(n,n))/5^n, n>=0, l>=0. Proof with the Binet-de Moivre formula for F and L and the binomial formula. (End)
Examples
Rows start (1), (1,2), (1,4,6), (1,6,15,20) etc. Row n=2, (1,4,6): F(2*l+1)^4 = (1*L(4*(2*l+1)) + 4*L(2*(2*l+1)) + 6)/25, F(2*l)^4 = (1*L(8*l) - 4*L(4*l) + 6)/25, l>=0, F=A000045, L=A000032. See a comment above. - _Wolfdieter Lang_, Sep 19 2012
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Magma
[[Binomial(2*n, k): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 28 2018
-
Mathematica
Flatten[Table[Binomial[2 n, k], {n, 0, 20}, {k, 0, n}]] (* G. C. Greubel, Jun 28 2018 *)
-
Maxima
create_list(binomial(2*n,k),n,0,9,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
for(n=0, 20, for(k=0, n, print1(binomial(2*n, k), ", "))) \\ G. C. Greubel, Jun 28 2018
Formula
a(n,k) = a(n,k-1)*((2*n+1)/k-1) with a(n,0)=1.
G.f.: 1/((1-sqrt(1-4*x*y))^4/(16*x*y^2) + sqrt(1-4*x*y) - x). - Vladimir Kruchinin, Jan 26 2021
Comments