cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 221 results. Next

A256839 Primes of form n^2 + 14641.

Original entry on oeis.org

14657, 14741, 14897, 15217, 15541, 15797, 15937, 19541, 20117, 22037, 22741, 23857, 25457, 28097, 30517, 31541, 38977, 40241, 42197, 43541, 44917, 47041, 48497, 50741, 57077, 58741, 61297, 64817, 65717, 74177, 77141, 80177, 82241, 87541, 107057, 117041
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a256839 n = a256839_list !! (n-1)
    a256839_list = [x | x <- map (+ 14641) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[500]^2+14641,PrimeQ] (* Harvey P. Dale, Mar 20 2017 *)

A256840 Primes of form n^2 + 20736.

Original entry on oeis.org

20857, 21577, 21961, 23761, 27961, 28657, 29017, 29761, 30937, 33961, 34897, 37897, 41761, 42937, 49297, 51361, 60337, 62761, 65257, 80761, 83737, 93097, 107761, 111337, 113761, 122497, 132961, 142537, 151057, 164377, 173617, 181537, 188017, 192961, 218761
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256841 (b=13).

Programs

  • Haskell
    a256840 n = a256840_list !! (n-1)
    a256840_list = [x | x <- map (+ 20736) a000290_list, a010051' x == 1]

A256841 Primes of form n^2 + 28561.

Original entry on oeis.org

28597, 28661, 28817, 28961, 29137, 29717, 30161, 30497, 30677, 31477, 32917, 33461, 34337, 34961, 35617, 37397, 38561, 42017, 42961, 47057, 49297, 49877, 51061, 55457, 60961, 62417, 64661, 66977, 70177, 70997, 72661, 74357, 75217, 76961, 78737, 86161, 93077
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12).

Programs

  • Haskell
    a256841 n = a256841_list !! (n-1)
    a256841_list = [x | x <- map (+ 28561) a000290_list, a010051' x == 1]
  • Mathematica
    Select[Range[300]^2+28561,PrimeQ] (* Harvey P. Dale, Oct 18 2021 *)

A206709 Number of primes of the form b^2 + 1 for b <= 10^n.

Original entry on oeis.org

5, 19, 112, 841, 6656, 54110, 456362, 3954181, 34900213, 312357934, 2826683630, 25814570672, 237542444180, 2199894223892
Offset: 1

Views

Author

Michel Lagneau, Feb 13 2012

Keywords

Comments

Conjecture: The number of primes of the form b^2 + 1 and less than n is asymptotic to 3*n/(4*log(n)).
Examples:
n = 10^3, a(n) = 112 and 3*10^3/(4*log(10^3)) = 108.573...;
n = 10^4, a(n) = 841 and 3*10^4/(4*log(10^4)) = 814.302...;
n = 10^10, a(n) = 312357934 and 3*10^10/(4*log(10^10)) = 325720861.42...
a(n) = A083844(2*n), but not always! The only known exception to this rule is at n = 1. - Arkadiusz Wesolowski, Jul 21 2012
From Jacques Tramu, Sep 14 2018: (Start)
In the table below, K = 0.686413 and pi(10^n) = A000720(10^n):
.
n a(n) K*pi(10^n)
== =========== ===========
1 5 3
2 19 17
3 112 115
4 841 843
5 6656 6584
6 54110 53882
7 456362 456175
8 3954181 3954737
9 34900213 34902408
10 312357934 312353959
11 2826683630 2826686358
12 25814570672 25814559712
(End)
For a comparison with the estimate that results from the Hardy and Littlewood Conjecture F, see A331942. - Hugo Pfoertner, Feb 03 2020

Examples

			a(2) = 19 because there are 19 primes of the form b^2 + 1 for b less than 10^2: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101 and 8837.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.

Crossrefs

Programs

  • Maple
    for n from 1 to 9 do : i:=0:for m from 1 to 10^n do:x:=m^2+1:if type(x,prime)=true then i:=i+1:else fi:od: printf ( "%d %d \n",n,i):od:
  • Mathematica
    1 + Accumulate@ Array[Count[Range[10^(# - 1) + 1, 10^#], ?(PrimeQ[#^2 + 1] &)] &, 7] (* _Michael De Vlieger, Sep 18 2018 *)
  • PARI
    a(n)=sum(n=1,10^n,ispseudoprime(n^2+1)) \\ Charles R Greathouse IV, Feb 13 2012
    
  • Python
    from sympy import isprime
    def A206709(n):
        c, b, b2, n10 = 0, 1, 2, 10**n
        while b <= n10:
            if isprime(b2):
                c += 1
            b += 1
            b2 += 2*b - 1
        return c # Chai Wah Wu, Sep 17 2018

Extensions

a(11)-a(12) from Arkadiusz Wesolowski, Jul 21 2012
a(13)-a(14) from Jinyuan Wang, Feb 24 2020

A035092 Smallest k such that (n^2)*k + 1 is prime.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 6, 3, 4, 1, 8, 1, 12, 4, 30, 1, 2, 3, 24, 1, 18, 1, 2, 4, 12, 2, 16, 12, 2, 3, 6, 1, 4, 13, 6, 1, 10, 2, 12, 6, 2, 6, 4, 8, 6, 9, 6, 9, 28, 1, 4, 1, 10, 3, 6, 4, 46, 4, 4, 3, 4, 1, 4, 3, 22, 6, 10, 2, 4, 1, 2, 7, 22, 3, 6, 4, 6, 3, 10, 1, 4, 3, 2, 4, 6, 1, 10, 4, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			a(40) = 1 because in 1600k + 1 at k = 1, 1601 is the smallest prime;
a(61) = 46 because in the 46*46*k + 1 sequence the first prime appears at k = 46; it is 171167.
		

Crossrefs

Analogous case is A034693. See also A005574 and A002496.

Programs

  • Mathematica
    Table[k = 1; While[! PrimeQ[k (n^2) + 1], k++]; k, {n, 94}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n)=k=1;while(!isprime(k*n^2+1),k++);k
    vector(100,n,a(n)) \\ Derek Orr, Oct 01 2014

A056905 Primes of the form k^2 + 5.

Original entry on oeis.org

5, 41, 149, 1301, 2309, 5189, 6089, 9221, 13001, 15881, 26249, 28229, 39209, 41621, 60521, 66569, 86441, 112901, 116969, 138389, 171401, 186629, 207941, 213449, 242069, 254021, 266261, 285161, 304709, 331781, 345749, 352841, 389381, 443561
Offset: 1

Views

Author

Henry Bottomley, Jul 07 2000

Keywords

Comments

Except for a(0), a(n) mod 180 = 41 or 149 since k must be a multiple of 6 without being a multiple of 30 for k^2+5 to be prime.

Examples

			a(2)=149 since 12^2 + 5 = 149, which is prime.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is n^2+5]; // Vincenzo Librandi, Nov 30 2011
    
  • Mathematica
    Select[Table[n^2+5,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
  • PARI
    is(n) = ispseudoprime(n) && issquare(n-5) \\ Felix Fröhlich, May 25 2018

Formula

a(n) = 36 * A056906(n) + 5.

A069987 Squarefree numbers of form k^2 + 1.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1090, 1157, 1226, 1297, 1370, 1522, 1601, 1765, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 2917, 3026
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002

Keywords

Comments

Heath-Brown (following Estermann) shows that, for any e > 0, there are k sqrt(x) + O(x^{7/24 + e}) members of this sequence up to x, for k = Product(1 - 2/p^2) = 0.8948412245... (A335963) where the product is over primes p = 1 mod 4. - Charles R Greathouse IV, Nov 19 2012, corrected by Amiram Eldar, Jul 08 2020
Integers k for which the period of the continued fraction of sqrt(k) is 1. - Michel Marcus, Apr 12 2019

Crossrefs

Programs

  • Maple
    select(numtheory:-issqrfree, [seq(n^2+1, n=1..100)]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[ Range[10^4], IntegerQ[ Sqrt[ # - 1]] && Union[ Transpose[ FactorInteger[ # ]] [[2]]] [[ -1]] == 1 &]
    Select[Range[60]^2+1,SquareFreeQ] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    for(n=1,100,if(issquarefree(n^2+1),print1(n^2+1,",")))

Formula

a(n) = A049533(n)^2 + 1.

Extensions

Edited and extended by Robert G. Wilson v, Benoit Cloitre and Vladeta Jovovic, May 04 2002

A070155 Numbers k such that k-1, k+1 and k^2+1 are prime numbers.

Original entry on oeis.org

4, 6, 150, 180, 240, 270, 420, 570, 1290, 1320, 2310, 2550, 2730, 3360, 3390, 4260, 4650, 5850, 5880, 6360, 6780, 9000, 9240, 9630, 10530, 10890, 11970, 13680, 13830, 14010, 14550, 16230, 16650, 18060, 18120, 18540, 19140, 19380, 21600, 21840
Offset: 1

Views

Author

Labos Elemer, Apr 23 2002

Keywords

Comments

Essentially the same as A129293. - R. J. Mathar, Jun 14 2008
Solutions to the equation: A000005(n^4-1) = 8. - Enrique Pérez Herrero, May 03 2012
Terms > 6 are multiples of 30. Subsequence of A070689. - Zak Seidov, Nov 12 2012
{a(n)-1} is a subsequence of A157468; for n>1, {a(n)^2+2} is a subsequence of A242720. - Vladimir Shevelev, Aug 31 2014

Examples

			150 is a term since 149, 151 and 22501 are all primes.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime(n-1) and isprime(n+1) and isprime(n^2+1), [seq(2*i,i=1..10000)]); # Robert Israel, Sep 02 2014
  • Mathematica
    Do[s=n; If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[1+s^2], Print[n]], {n, 1, 1000000}]
    Select[Range[22000],AllTrue[{#+1,#-1,#^2+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1); \\ Amiram Eldar, Apr 15 2024

Formula

For n>1, a(n)^2 = A242720(pi(a(n)-2)) - 2, where pi(n) is the prime counting function (A000720). - Vladimir Shevelev, Sep 02 2014

A088179 Primes p such that mu(p-1) = 1; that is, p-1 is squarefree and has an even number of prime factors, where mu is the Moebius function.

Original entry on oeis.org

2, 7, 11, 23, 47, 59, 83, 107, 167, 179, 211, 227, 263, 331, 347, 359, 383, 463, 467, 479, 503, 547, 563, 571, 587, 691, 719, 839, 859, 863, 887, 911, 967, 983, 1019, 1123, 1187, 1231, 1283, 1291, 1303, 1307, 1319, 1327, 1367, 1439, 1483, 1487, 1523, 1619, 1723
Offset: 1

Views

Author

N. J. A. Sloane and T. D. Noe, Nov 03 2003

Keywords

Comments

It is an unsolved problem to determine if this sequence has a positive density in the primes. - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Except for the initial element 2, this sequence seems to be exactly those primes the sum of whose nonquadratic, nonprimitive-root residues is congruent to -1(mod p). - Dimitri Papadopoulos, Jan 10 2016

Crossrefs

Cf. A049092 (primes p with mu(p-1)=0), A078330 (primes p with mu(p-1)=-1), A089451 (mu(p-1) for prime p).
Cf. A002496.

Programs

  • Magma
    [n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // Vincenzo Librandi, Jan 10 2016
  • Maple
    filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc:
    select(filter, [2,seq(i,i=3..2000,2)]); # Robert Israel, Feb 03 2016
  • Mathematica
    Select[Prime[Range[400]], MoebiusMu[ #-1]==1&]
  • PARI
    lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 10 2016
    
  • PARI
    list(lim)=my(v=List(),last); forsquarefree(k=1,lim\1, if(moebius(k)==1, last=k[1], if(k[2][,2]==[1]~ && k[1]-last==1, listput(v,k[1])))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
    

A199307 Primes of the form 4n^3 + 1.

Original entry on oeis.org

5, 109, 257, 1373, 2917, 4001, 27437, 62501, 157217, 202613, 237277, 296353, 470597, 629857, 665501, 1492993, 1556069, 1898209, 2456501, 2634013, 3217429, 3322337, 4244833, 5038849, 5180117, 6572129, 10512289, 11453153, 12706093
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2011

Keywords

Comments

Dirichlet's theorem on primes in arithmetic progressions tells us, for example, that there are infinitely many primes of the form 4n+1. For primes represented by polynomials of degree greater than 1, the Bateman-Horn paper gives a conjecture on the density.

Crossrefs

Programs

Previous Showing 41-50 of 221 results. Next