cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 78 results. Next

A144828 Partial products of successive terms of A017113; a(0)=1.

Original entry on oeis.org

1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Comments

a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011
Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011

Examples

			a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses.  These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
		

Crossrefs

Essentially the same as A052714. - N. J. A. Sloane, Feb 03 2013
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
    Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
    
  • Sage
    [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k).
a(n) = A052714(n+1). - R. J. Mathar, Oct 01 2008
a(n) = 2^n *(2*n)! / n!. - Justin M. Troyka, Aug 11 2011
G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: 1/sqrt(1-8*x). - Philippe Deléham, May 14 2015
a(n) = 4^n * A001147(n). - Philippe Deléham, May 14 2015
a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
a(n) = 2^n * (n+1)! * Catalan(n). - G. C. Greubel, Apr 02 2021
Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - Amiram Eldar, Dec 20 2022

A167584 The ED4 array read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED4 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED4 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED3 arrays see A167546, A167560 and A167572.
The Madhava-Gregory-Leibniz series representation for Pi/4 is the case m = 0 of the following more general result: for m = 0,1,2,... there holds 1/(2*m)! * Pi/4 = Sum_{k >= 0} ( (-1)^(m+k) * 1/Product_{j = -m .. m} (2*k + 1 + 2*j) ). The entries of this table are given by truncating these series to n-1 terms and then scaling by certain double factorials -- see the formula below. - Peter Bala, Nov 06 2016

Examples

			The ED4 array begins with:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1
  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
  13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
  76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
  789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
  7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
  ...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
  n\m|     -4     -3    -2    -1    0
  -----------------------------------
   0 |      0      0     0     0    0
   1 |      1      1     1     1    1
   2 |    -18    -14   -10    -6   -2
   3 |    233    141    73    29    9
   4 |  -2844  -1428  -620  -228  -60
   5 |  39309  17877  7149  2325  525
  ...
Column  0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
		

Crossrefs

A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the array.
A024199, A167588 and A167589 equal the first three columns of the array.
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf. A002866 (the 2^(n-1)*n! factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167572 (ED3 array). Cf. A001193, A003881.

Programs

  • Maple
    T := proc (n, m) option remember;
          if n = 0 then 0
           elif n = 1 then 1
           else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
          end if;
         end proc:
    #square array read by antidiagonals
    seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
    # Peter Bala, Nov 06 2016
  • Mathematica
    T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)

Formula

a(n,m) = ((2*m-3)!!/(2*(2*m-2*n-3)!!))*Integral_{y=0..oo} sinh(y*(2*n))/(cosh(y))^(2*m-1) dy for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = 2^(n-1)*n!
From Peter Bala, Nov 06 2016: (Start)
T(n,m) = ((2*m - 3)!!/(2*(2*m - 2*n - 3)!!)) * Sum_{k = 0..n-1} (-1)^(k+1)*binomial(2*n - k - 1, k)*2^(2*n - 2*k - 1)*1/(2*n - 2*m - 2*k + 1), for n and m >= 0.
Note the double factorial for a negative odd integer N is defined in terms of the gamma function as N!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
T(n, m) = (2*m - 3)!! * (2*n + 2*m - 3)!! * Sum_{k = 0..n-1} ( (-1)^(m + k + 1) / Product_{j = -(m-1) .. m-1} (2*k + 1 + 2*j) ).
Using this result we can extend the table to nonpositive values of m (the column index). Column 0 is a signed version of A001193. We have for m <= 0, T(n,m) = (2*n - 2*|m| - 3)!!/(2*|m| + 1)!! * Sum_{k = 0..n-1} (-1)^k*Product_{j = -|m|..|m|} (2*k + 1 + 2*j).
Recurrence: T(n, m) = (4*m - 2)*T(n-1, m) + (2*n + 2*m - 5)*(2*n - 2*m - 1)*T(n-2, m).
For a fixed value of n, the entries in row n are polynomial in the value of the column index m. The first few polynomials are [1, 4*m - 2, 12*m^2 - 8*m + 9, 32*m^3 - 16*m^2 + 120*m - 60, 80*m^4 + 952*m^2 - 768*m + 525, ...]. (End)

A257609 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 16, 4, 8, 88, 88, 8, 16, 416, 1056, 416, 16, 32, 1824, 9664, 9664, 1824, 32, 64, 7680, 76224, 154624, 76224, 7680, 64, 128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128, 256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256
Offset: 0

Views

Author

Dale Gerdemann, May 03 2015

Keywords

Examples

			Triangle begins as:
    1;
    2,      2;
    4,     16,       4;
    8,     88,      88,        8;
   16,    416,    1056,      416,       16;
   32,   1824,    9664,     9664,     1824,       32;
   64,   7680,   76224,   154624,    76224,     7680,      64;
  128,  31616,  549504,  1999232,  1999232,   549504,   31616,    128;
  256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Magma
    function T(n,k,a,b)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 or k eq n then return 1;
      else return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b);
      end if; return T;
    end function;
    [T(n,k,2,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 21 2022
    
  • Magma
    A257609:= func< n,k | 2^n*EulerianNumber(n+1, k) >;
    [A257609(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,2,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
  • Sage
    def T(n,k,a,b): # A257609
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,2,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.
Sum_{k=0..n} T(n, k) = A002866(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = 2*A100575(n+1). (End)
T(n, k) = 2^n*A008292(n+1, k+1). - G. C. Greubel, Jan 17 2025

A051578 a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).

Original entry on oeis.org

1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0

Views

Author

Keywords

Comments

Row m=4 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577 (rows m=0..3), A051579, A051580, A051581, A051582, A051583.
Cf. A052587 (essentially the same).

Programs

  • GAP
    List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 29 2019
    seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
    Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
  • PARI
    vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
    
  • PARI
    apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
    
  • Sage
    [2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = (2*n+4)!!/4!!.
E.g.f.: 1/(1-2*x)^3.
a(n) ~ 2^(-1/2)*Pi^(1/2)*n^(5/2)*2^n*e^-n*n^n*{1 + 37/12*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = (n+2)!*2^(n-1). - Zerinvary Lajos, Sep 23 2006. [corrected by Gary Detlefs, Apr 29 2019]
a(n) = 2^n*A001710(n+2). - R. J. Mathar, Feb 22 2008
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 6)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 6*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 6*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - 10*x/(1 - 6*x/(1 - ... - (2*n + 4)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 6*x/(1 - 8*x/(1 - 2*x/(1 - 10*x/(1 - 4*x/(1 - 12*x/(1 - 6*x/(1 - ... - (2*n + 6)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 8*sqrt(e) - 12.
Sum_{n>=0} (-1)^n/a(n) = 8/sqrt(e) - 4. (End)
a(n) = A052587(n+2) for n > 0. - M. F. Hasler, Nov 10 2024

A144827 Partial products of successive terms of A017029; a(0)=1.

Original entry on oeis.org

1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Examples

			a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
		

Crossrefs

Programs

  • Magma
    [ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Mathematica
    FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
  • SageMath
    [1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*7^(n-k).
G.f.: 1/(1-4*x/(1-7*x/(1-11*x/(1-14*x/(1-18*x/(1-21*x/(1-25*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-3)^n*Sum_{k=0..n} (7/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(4/7).
a(n) ~ sqrt(2*Pi)*7^n*n^(n+1/14)/(exp(n)*Gamma(4/7)). (End)
a(n) = 4*7^(n-1)*Pochhammer(n-1, 11/7) with a(0) = 1. - G. C. Greubel, Feb 22 2022
Sum_{n>=0} 1/a(n) = 1 + (e/7^3)^(1/7)*(Gamma(4/7) - Gamma(4/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Corrected a(9) by Vincenzo Librandi, Jul 14 2011

A051580 a(n) = (2*n+6)!!/6!!, related to A000165 (even double factorials).

Original entry on oeis.org

1, 8, 80, 960, 13440, 215040, 3870720, 77414400, 1703116800, 40874803200, 1062744883200, 29756856729600, 892705701888000, 28566582460416000, 971263803654144000, 34965496931549184000, 1328688883398868992000
Offset: 0

Views

Author

Keywords

Comments

Row m=6 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577, A051578, A051579 (rows m=0..5), A051581, A051582, A051583.

Programs

  • GAP
    List([0..20], n-> Product([1..n], j-> 2*j+6) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[2*j+6: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(2*j+6, j=1..n), n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[2^n*Pochhammer[4, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
    Table[(2n+6)!!/6!!,{n,0,20}] (* Harvey P. Dale, Mar 03 2022 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+6) ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (2*j+6) for j in (1..n)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = (2*n+6)!!/6!!.
E.g.f.: 1/(1-2*x)^4.
a(n) = n!*2^(n-4)/3, n>=3. - Zerinvary Lajos, Sep 23 2006
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + 1/(2*k+8)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 8)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 8*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 8*x/(1 - 2*x/(1 - 10*x/(1 - 4*x/(1 - 12*x/(1 - 6*x/(1 - ... - (2*n + 6)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 8*x/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*sqrt(e) - 78.
Sum_{n>=0} (-1)^n/a(n) = 30 - 48/sqrt(e). (End)

A051579 a(n) = (2*n+5)!!/5!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 7, 63, 693, 9009, 135135, 2297295, 43648605, 916620705, 21082276215, 527056905375, 14230536445125, 412685556908625, 12793252264167375, 422177324717523375, 14776206365113318125, 546719635509192770625
Offset: 0

Views

Author

Keywords

Comments

Row m=5 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577, A051578 (rows m=0..4).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+7) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+7: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+5)/df(5), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[7/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+5) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+7) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+5)!!/4!!.
E.g.f.: 1/(1-2*x)^(7/2).
a(n) ~ 8/15*sqrt(2)*n^3*2^n*e^-n*n^n*(1 + 107/24*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: G(0)/(10*x) -1/(5*x), where G(k)= 1 + 1/(1 - x*(2*k+5)/(x*(2*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 13 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 7)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 7*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 7*x/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - ... - (2*n + 5)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 7*x/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 15 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 20, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 15 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)) - 10, where erfi is the imaginary error function. (End)

A051582 a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).

Original entry on oeis.org

1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0

Views

Author

Keywords

Comments

Row m=8 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580, A051581 (rows m=0..7), A051583.

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
  • Magma
    F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    (2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
    Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
    
  • Sage
    f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+8)!!/8!!.
E.g.f.: 1/(1-2*x)^5.
a(n) = (n+4)!*2^(n-1)/12. - Zerinvary Lajos, Sep 23 2006
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 10)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 10*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 10*x/(1 - 12*x/(1 - 2*x/(1 - 14*x/(1 - 4*x/(1 - 16*x/(1 - 6*x/(1 - ... - (2*n + 10)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 384*sqrt(e) - 632.
Sum_{n>=0} (-1)^n/a(n) = 384/sqrt(e) - 232. (End)

A324513 Number of aperiodic cycle necklaces with n vertices.

Original entry on oeis.org

1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

We define an aperiodic cycle necklace to be an equivalence class of (labeled, undirected) Hamiltonian cycles under rotation of the vertices such that all n of these rotations are distinct.

Crossrefs

Cf. A000740, A000939, A001037 (binary Lyndon words), A008965, A059966 (Lyndon compositions), A060223 (normal Lyndon words), A061417, A064852 (if cycle is oriented), A086675, A192332, A275527, A323866 (aperiodic toroidal arrays), A323871.

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
  • PARI
    a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A324512(n)/n.
a(2*n+1) = A064852(2*n+1)/2 for n > 0; a(2*n) = (A064852(2*n) - A002866(n-1))/2 for n > 1. - Andrew Howroyd, Aug 16 2019

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A051581 a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580 (rows m=0..6), A051582, A051583.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+7)!!/7!!.
E.g.f.: 1/(1-2*x)^(9/2).
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + 1/(2*k+9)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 9)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 9*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 9*x/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 105 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 147, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 77 - 105 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)
Previous Showing 11-20 of 78 results. Next