A144828
Partial products of successive terms of A017113; a(0)=1.
Original entry on oeis.org
1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses. These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
-
[2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
-
A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
-
Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
-
a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
-
{a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
-
[2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021
A167584
The ED4 array read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1
The ED4 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 6, 10, 14, 18, 22, 26, 30, 34, 38
13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
n\m| -4 -3 -2 -1 0
-----------------------------------
0 | 0 0 0 0 0
1 | 1 1 1 1 1
2 | -18 -14 -10 -6 -2
3 | 233 141 73 29 9
4 | -2844 -1428 -620 -228 -60
5 | 39309 17877 7149 2325 525
...
Column 0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf.
A002866 (the 2^(n-1)*n! factor).
-
T := proc (n, m) option remember;
if n = 0 then 0
elif n = 1 then 1
else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
end if;
end proc:
#square array read by antidiagonals
seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
# Peter Bala, Nov 06 2016
-
T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)
A257609
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 16, 4, 8, 88, 88, 8, 16, 416, 1056, 416, 16, 32, 1824, 9664, 9664, 1824, 32, 64, 7680, 76224, 154624, 76224, 7680, 64, 128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128, 256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 16, 4;
8, 88, 88, 8;
16, 416, 1056, 416, 16;
32, 1824, 9664, 9664, 1824, 32;
64, 7680, 76224, 154624, 76224, 7680, 64;
128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128;
256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256;
Similar sequences listed in
A256890.
-
function T(n,k,a,b)
if k lt 0 or k gt n then return 0;
elif k eq 0 or k eq n then return 1;
else return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b);
end if; return T;
end function;
[T(n,k,2,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 21 2022
-
A257609:= func< n,k | 2^n*EulerianNumber(n+1, k) >;
[A257609(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,2,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
def T(n,k,a,b): # A257609
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,2,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
A051578
a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0
Cf.
A052587 (essentially the same).
-
List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
-
[2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
-
a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 29 2019
seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
-
vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
-
apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
-
[2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A051580
a(n) = (2*n+6)!!/6!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 8, 80, 960, 13440, 215040, 3870720, 77414400, 1703116800, 40874803200, 1062744883200, 29756856729600, 892705701888000, 28566582460416000, 971263803654144000, 34965496931549184000, 1328688883398868992000
Offset: 0
-
List([0..20], n-> Product([1..n], j-> 2*j+6) ); # G. C. Greubel, Nov 11 2019
-
[1] cat [(&*[2*j+6: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(2*j+6, j=1..n), n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^n*Pochhammer[4, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
Table[(2n+6)!!/6!!,{n,0,20}] (* Harvey P. Dale, Mar 03 2022 *)
-
vector(20, n, prod(j=1,n-1, 2*j+6) ) \\ G. C. Greubel, Nov 11 2019
-
[product( (2*j+6) for j in (1..n)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051579
a(n) = (2*n+5)!!/5!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 7, 63, 693, 9009, 135135, 2297295, 43648605, 916620705, 21082276215, 527056905375, 14230536445125, 412685556908625, 12793252264167375, 422177324717523375, 14776206365113318125, 546719635509192770625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+7) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+7: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
df:=doublefactorial; seq(df(2*n+5)/df(5), n = 0..20); # G. C. Greubel, Nov 12 2019
-
Table[2^n*Pochhammer[7/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=1,n-1, 2*j+5) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+7) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051582
a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0
-
F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
-
F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
-
(2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
-
f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A324513
Number of aperiodic cycle necklaces with n vertices.
Original entry on oeis.org
1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1
Cf.
A000740,
A000939,
A001037 (binary Lyndon words),
A008965,
A059966 (Lyndon compositions),
A060223 (normal Lyndon words),
A061417,
A064852 (if cycle is oriented),
A086675,
A192332,
A275527,
A323866 (aperiodic toroidal arrays),
A323871.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
-
a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019
A051581
a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
-
Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
Comments