cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A138464 Triangle read by rows: T(n, k) is the number of forests on n labeled nodes with k edges. T(n, k) for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 1, 10, 45, 110, 125, 1, 15, 105, 435, 1080, 1296, 1, 21, 210, 1295, 5250, 13377, 16807, 1, 28, 378, 3220, 18865, 76608, 200704, 262144, 1, 36, 630, 7056, 55755, 320544, 1316574, 3542940, 4782969, 1, 45, 990, 14070, 143325, 1092105, 6258000, 26100000, 72000000, 100000000
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2008

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type A. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163). - Peter Luschny, May 01 2021

Examples

			Triangle begins:
[1]  1;
[2]  1,  1;
[3]  1,  3,   3;
[4]  1,  6,  15,   16;
[5]  1, 10,  45,  110,  125;
[6]  1, 15, 105,  435, 1080,  1296;
[7]  1, 21, 210, 1295, 5250, 13377, 16807;
		

Crossrefs

Row sums give A001858. Rightmost diagonal gives A000272. Cf. A136605.
Rows reflected give A105599. - Alois P. Heinz, Oct 28 2011
Cf. A088956.
Lower diagonals give: A083483, A239910, A240681, A240682, A240683, A240684, A240685, A240686, A240687. - Alois P. Heinz, Apr 11 2014
T(2n,n) gives A302112.
For Ehrhart polynomials of integral Coxeter permutahedra of classical type cf. this sequence (type A), A343805 (type B), A343806 (type C), A343807 (type D).

Programs

  • Maple
    T:= proc(n) option remember; if n=0 then 0 else T(n-1) +n^(n-1) *x^n/n! fi end: TT:= proc(n) option remember; expand(T(n) -T(n)^2/2) end: f:= proc(k) option remember; if k=0 then 1 else unapply(f(k-1)(x) +x^k/k!, x) fi end: A:= proc(n,k) option remember; series(f(k)(TT(n)), x,n+1) end: aa:= (n,k)-> coeff(A(n,k), x,n) *n!: a:= (n,k)-> aa(n,n-k) -aa(n,n-k-1): seq(seq(a(n,k), k=0..n-1), n=1..10);  # Alois P. Heinz, Sep 02 2008
    alias(W = LambertW): EhrA := exp(-W(-t*x)/t - W(-t*x)^2/(2*t)):
    ser := series(EhrA, x, 12): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k=0..n-1):
    seq(T(n), n = 1..10); # Peter Luschny, Apr 30 2021
  • Mathematica
    t[0, 0] = 1; t[n_ /; n >= 1, k_] /; (0 <= k <= n-1) := t[n, k] = Sum[(i+1)^(i-1)*Binomial[n-1, i]*t[n-i-1, k-i], {i, 0, k}]; t[, ] = 0; Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Peter Bala *)
    gf := E^(-(ProductLog[-(t x)] (2 + ProductLog[-(t x)]))/(2 t));
    ser := Series[gf, {x, 0, 12}]; cx[n_] := n! Coefficient[ser, x, n];
    Table[CoefficientList[cx[n], t], {n, 1, 10}] // Flatten  (* Peter Luschny, May 01 2021 *)

Formula

From Peter Bala, Aug 14 2012: (Start)
T(n+1,k) = Sum_{i=0..k} (i+1)^(i-1)*binomial(n,i)*T(n-i,k-i) with T(0,0)=1.
Recurrence equation for row polynomials R(n,t): R(n,t) = Sum_{k=0..n-1} (k+1)^(k-1)*binomial(n-1,k)*t^k*R(n-k-1,t) with R(0,t) = R(1,t) = 1.
The production matrix for the row polynomials of the triangle is obtained from A088956 and starts:
1 t
1 1 t
3 2 1 t
16 9 3 1 t
125 64 18 4 1 t
(End)
E.g.f.: exp( Sum_{n >= 1} n^(n-2)*t^(n-1)*x^n/n! ). - Peter Bala, Nov 08 2015
T(n, k) = [t^k] n! [x^n] exp(-W(-t*x)/t - W(-t*x)^2/(2*t)), where W denotes the Lambert function. - Peter Luschny, Apr 30 2021 [Typo corrected after note from Andrew Howroyd, Peter Luschny, Jun 20 2021]

Extensions

More terms from Alois P. Heinz, Sep 02 2008

A000459 Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed points.

Original entry on oeis.org

1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152, 305104214112561, 70830194649795010, 19629681235869138841, 6401745422388206166420, 2427004973632598297444857, 1058435896607583305978409166, 526149167104704966948064477665
Offset: 0

Views

Author

Keywords

Comments

Original definition: Number of permutations with no hits on 2 main diagonals. (Identical to definition of A000316.) - M. F. Hasler, Sep 27 2015
Card-matching numbers (Dinner-Diner matching numbers): A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the j-th hand of kind j. A(n) is the number of ways of achieving no matches. The probability of no matches is A(n)/((2n)!/2!^n).
Also, Penrice's Christmas gift numbers (see Penrice 1991).
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 3 pure options. - Raimundas Vidunas, Jan 22 2014

Examples

			There are 297 ways of achieving zero matches when there are 2 cards of each kind and 4 kinds of card so a(4)=297.
From _Peter Bala_, Jul 08 2014: (Start)
a(3) = 10: the 10 permutations of the multiset {1,1,2,2,3,3} that have no fixed points are
{2,2,3,3,1,1}, {3,3,1,1,2,2}
{2,3,1,3,1,2}, {2,3,1,3,2,1}
{2,3,3,1,1,2}, {2,3,3,1,2,1}
{3,2,1,3,1,2}, {3,2,1,3,2,1}
{3,2,3,1,1,2}, {3,2,3,1,2,1}
(End)
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else n*(2*n-1)*Self(n-1)+2*n*(n-1)*Self(n-2)-(2*n-1): n in [1..30]]; // Vincenzo Librandi, Sep 28 2015
    
  • Maple
    p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2)/2!^n,n=0..18);
  • Mathematica
    RecurrenceTable[{(2*n+3)*a[n+3]==(2*n+5)^2*(n+2)*a[n+2]+(2*n+3)*(n+2)*a[n+1]-2*(2*n+5)*(n+1)*(n+2)*a[n],a[1]==0,a[2]==1,a[3]==10},a,{n,1,25}] (* Vaclav Kotesovec, Aug 31 2012 *)
    a[n_] := a[n] = n*(2*n-1)*a[n-1] + 2*n*(n-1)*a[n-2] - (2*n-1); a[0] = 1; a[1] = 0; a[2] = 1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 04 2013 *)
    a[n_] := Sum[(2*(n-m))! / 2^(n-m) Binomial[n, m] Hypergeometric1F1[m-n, 2*(m - n), -4], {m, 0, n}]; Table[a[n], {n, 0, 16}] (* Peter Luschny, Nov 15 2023 *)
  • PARI
    a(n) = (2^n*round(2^(n/2+3/4)*Pi^(-1/2)*exp(-2)*n!*besselk(1/2+n,2^(1/2))))/2^n;
    vector(15, n, a(n))\\ Altug Alkan, Sep 28 2015
    
  • PARI
    { A000459(n) = sum(m=0,n, sum(k=0,n-m, (-1)^k * binomial(n,k) * binomial(n-k,m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); } \\ Max Alekseyev, Oct 06 2016

Formula

a(n) = A000316(n)/2^n.
a(n) = Sum_{k=0..n} Sum_{m=0..n-k} (-1)^k * n!/(k!*m!*(n-k-m)!) * 2^(2*k+m-n) * (2*n-2*m-k)!. - Max Alekseyev, Oct 06 2016
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and coeff(R(x, n, k), x, j) is the coefficient of x^j of the rook polynomial R(x, n, k) = (k!^2*sum(x^j/((k-j)!^2*j!))^n (see Riordan or Stanley).
D-finite with recurrence a(n) = n*(2*n-1)*a(n-1)+2*n*(n-1)*a(n-2)-(2*n-1), a(1) = 0, a(2) = 1.
a(n) = round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))). - Mark van Hoeij, Oct 30 2011
(2*n+3)*a(n+3)=(2*n+5)^2*(n+2)*a(n+2)+(2*n+3)*(n+2)*a(n+1)-2*(2*n+5)*(n+1)*(n+2)*a(n). - Vaclav Kotesovec, Aug 31 2012
Asymptotic: a(n) ~ n^(2*n)*2^(n+1)*sqrt(Pi*n)/exp(2*n+2), Vaclav Kotesovec, Aug 31 2012
a(n) = (1/2^n)*A000316(n) = int_{0..inf} exp(-x)*(1/2*x^2 - 2*x + 1)^n dx. Asymptotic: a(n) ~ ((2*n)!/2^n)*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. - Peter Bala, Jul 07 2014
Let S = x_1 + ... + x_n. a(n) equals the coefficient of (x_1*...*x_n)^2 in the expansion of product {i = 1..n} (S - x_i)^2 (MacMahon, Chapter III). - Peter Bala, Jul 08 2014
Conjecture: a(n+k) - a(n) is divisible by k. - Mark van Hoeij, Nov 15 2023

Extensions

More terms and edited by Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015
a(0)=1 prepended by Max Alekseyev, Oct 06 2016

A003470 a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.

Original entry on oeis.org

1, 1, 3, 8, 31, 147, 853, 5824, 45741, 405845, 4012711, 43733976, 520795003, 6726601063, 93651619881, 1398047697152, 22275111534553, 377278848390249, 6768744159489931, 128228860181918440, 2557808459478878871, 53585748788874537851, 1176328664895760953853
Offset: 0

Views

Author

Keywords

Comments

Row sums of A086764. - Philippe Deléham, Apr 27 2004
a(n+2m) == a(n) (mod m) for all n and m. - Robert Israel, Dec 06 2016

Examples

			G.f. = 1 + x + 3*x^2 + 8*x^3 + 31*x^4 + 147*x^5 + 853*x^6 + 5824*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) -(n-1)*a(n-1)-(n-2)*a(n-2)+a(n-3)-2=0,a(0)=1,a(1)=1,a(2)=3},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Dec 06 2016
  • Mathematica
    t = {1, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]] + 1 + (-1)^n], {n, 2, 20}] (* T. D. Noe, Oct 07 2013 *)
    T[n_, k_] := HypergeometricPFQ[{k+1, k-n},{},-1];
    Table[Sum[(-1)^k T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)

Formula

Diagonal sums of reverse of permutation triangle A008279. a(n) = Sum_{k=0..floor(n/2)} (n-k)!/k!. - Paul Barry, May 12 2004
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(n-2k)!. - Paul Barry Dec 15 2010
G.f.: 1/(1-x^2-x/(1-x/(1-x^2-2x/(1-2x/(1-x^2-3x/(1-3x/(1-x^2-4x/(1-4x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2-x^2/(1-3x-x^2-4x^2/(1-5x-x^2-9x^2/(1-7x-x^2-16x^2/(1-... (continued fraction). - Paul Barry, Dec 15 2010
G.f.: hypergeom([1,1],[],x/(1-x^2))/(1-x^2). - Mark van Hoeij, Nov 08 2011
G.f.: 1/Q(0), where Q(k)= 1 - x^2 - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
From Robert Israel, Dec 06 2016: (Start)
a(2m) = hypergeom([1,-m,m+1],[],-1).
a(2m+1) = hypergeom([1,-m,m+2],[],-1)*(m+1).
a(2m-1) + a(2m+1) = (2m+1) a(2m). (End)
0 = a(n)*(-a(n+2) - a(n+3)) + a(n+1)*(-2 + a(n+1) - 2*a(n+3) + a(n+4)) + a(n+2)*(-2*a(n+3) + a(n+4)) + a(n+3)*(+2 - a(n+3)) if n >= 0. - Michael Somos, Dec 06 2016
0 = a(n)*(-a(n+2) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - a(n+3) + 3*a(n+4) - a(n+5)) + a(n+2)*(-a(n+3) + a(n+4)) + a(n+3)*(-a(n+4) + a(n+5)) + a(n+4)*(-a(n+4)) if n >= 0. - Michael Somos, Dec 06 2016
a(n) = Sum_{k=0..n} (-1)^k*hypergeom([k+1, k-n], [], -1). - Peter Luschny, Oct 05 2017
D-finite with recurrence: a(n) -n*a(n-1) +(n-2)*a(n-3) -a(n-4)=0. - R. J. Mathar, Apr 29 2020
a(n) ~ n! * (1 + 1/n + 1/(2*n^2) + 2/(3*n^3) + 25/(24*n^4) + 77/(40*n^5) + 2971/(720*n^6) + 6287/(630*n^7) + 1074809/(40320*n^8) + 28160749/(362880*n^9) + ...). - Vaclav Kotesovec, Nov 25 2022

Extensions

More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 25 2004

A000316 Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.

Original entry on oeis.org

1, 0, 4, 80, 4752, 440192, 59245120, 10930514688, 2649865335040, 817154768973824, 312426715251262464, 145060238642780180480, 80403174342119992692736, 52443098500204184915312640, 39764049487996490505336537088
Offset: 0

Views

Author

Keywords

Comments

Each deck contains 2n cards.
The probability of no matches is a(n)/(2n)!.
n couples meet for a party and they exchange gifts. Each of the 2n writes their name on a piece of paper and puts it into a hat. They take turns drawing names and give their gift to the person whose name they drew. If anyone draws either their own name or the name of their partner, everyone puts the name they have drawn back into the hat and everyone draws anew. a(n) is the number of different permissible drawings. - Dan Dima, Dec 17 2006
(2n)! / a(n) is the expected number of deck shuffles until no matches occur. a(n) / (2n)! is the probability for a permissible drawing to be achieved. (2n)! / a(n) is the expected number of drawings before a permissible drawing is achieved. As n goes to infinity (2n)! / a(n) will strictly decrease very slowly to e^2 ~ 7.38906 (starting from n > 2) - Dan Dima, Dec 17 2006
a(n) equals the permanent of the (2n)X(2n) matrix with 0's along the main diagonal and the antidiagonal, and 1's everywhere else. - John M. Campbell, Jul 11 2011
Also, number of permutations p of (1,...,2n) such that round(p(k)/2) != round(k/2) for all k=1,...,2n (where half-integers are rounded up). - M. F. Hasler, Sep 30 2015

Examples

			There are 80 ways of achieving zero matches when there are 2 cards of each kind and 3 kinds of card so a(3)=80.
Among the 24 (multiset) permutations of {1,1',2,2'}, only {2,2',1,1'}, {2',2,1,1'}, {2,2',1',1} and {2',2,1',1} have no fixed points, thus a(2)=4.
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); seq(f(0,n,2), n=0..18);
  • Mathematica
    (* b = A000459 *)
    b[n_] := b[n] = Switch[n, 0, 1, 1, 0, 2, 1, _, n(2n-1) b[n-1] + 2n(n-1) b[n-2] - (2n-1)];
    a[n_] := b[n] * 2^n;
    Array[a, 14] (* Jean-François Alcover, Oct 30 2019 *)
  • PARI
    a(n)=if(n==0, 1, round(2^(n/2+3/4)/Pi^.5*exp(-2)*n!*besselk(1/2+n,2^.5))<M. F. Hasler, Sep 27 2015
    
  • PARI
    \\ Illustration of the multiset-fixed-point interpretation
    count(n,c=ceil(vector(n,i,i)/2))=sum(k=1,n!,!setsearch(Set(ceil(Vec(numtoperm(n,k))/2)-c),0))
    a(n) = count(2*n) \\ M. F. Hasler, Sep 30 2015

Formula

a(n) = A000459(n)*2^n.
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*Sum_{j=0..k} x^j/((k-j)!^2*j!))^n (see Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
From Dan Dima, Dec 17 2006: (Start)
a(n) = n! * Sum_{a,b >= 0, a+b <= n} (-1)^b * 2^(a+2*b) * (2*n-2*a-b)! / (a! * b! * (n-a-b)!).
a(n) = n * a(n-1) + n! * 4^n * Sum_{a=0..n} (-1)^a / (a! * 2^a). (End)
a(n) = 2^n * round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))) for n > 0. - Mark van Hoeij, Oct 30 2011
Recurrence: (2*n-3)*a(n) = 2*(n-1)*(2*n-1)^2*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2) - 16*(n-2)*(n-1)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 07 2013
From Peter Bala, Jul 07 2014: (Start)
a(n) = Integral_{x>=0} exp(-x)*(x^2 - 4*x + 2)^n dx. Cf. A000166(n) = Integral_{x>=0} exp(-x)*(x - 1)^n dx.
Asymptotic: a(n) ~ (2*n)!*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. (End)

Extensions

Formulae, more terms etc. from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015 and N. J. A. Sloane, Oct 02 2015
a(0)=1 prepended by Andrew Howroyd, Oct 09 2020

A003482 a(n) = 7*a(n-1) - a(n-2) + 4, with a(0) = 0, a(1) = 5.

Original entry on oeis.org

0, 5, 39, 272, 1869, 12815, 87840, 602069, 4126647, 28284464, 193864605, 1328767775, 9107509824, 62423800997, 427859097159, 2932589879120, 20100270056685, 137769300517679, 944284833567072, 6472224534451829, 44361286907595735, 304056783818718320
Offset: 0

Views

Author

Keywords

Comments

The values (a(n),x(n)), n >= 2, x(n)=Fibonacci(2*n+2)*Fibonacci(2*n+3)=A081018(n+1), are the integer solutions (a,x) of the equation binomial(x+1,a+1) + binomial(x+2,a+1) = binomial(x+3,a+1). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
The values (a(n),x(n)), n >= 2 are also the integer solutions (a, x) of the equation x(a+1) = (x-a)(x-a-1) or, equivalently, binomial(x, a) = binomial(x-1, a+1). - Tomohiro Yamada, May 30 2018

Examples

			G.f. = 5*x + 39*x^2 + 272*x^3 + 1869*x^4 + 12815*x^5 + 87840*x^6 + ... - _Michael Somos_, Jun 26 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Fibonacci(2*n) * Fibonacci(2*n+3).
a(n) = Fibonacci(2*n+2)^2 - Fibonacci(2*n+1)^2. - Gary Detlefs, Oct 12 2011
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3). - Vladimir Joseph Stephan Orlovsky and Vincenzo Librandi, Jan 22 2012
a(n) = -4/5 + (sqrt(5)/5 + 2/5)*(7/2 + 3*sqrt(5)/2)^n - (sqrt(5)/5 - 2/5)*(7/2 - 3*sqrt(5)/2)^n. - Antonio Alberto Olivares, May 29 2013
a(n) = -A206351(-n) for all n in Z. - Michael Somos, Jun 26 2018
From Sébastien Labbé, May 06 2022: (Start)
a(n) = Sum_{k=2..2*n+1} Fibonacci(k)^2.
a(n) = A001654(2*n+1)-1. (End)

A059300 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1;
1,  2;
1,  6,   3;
1, 12,  24,    4;
1, 20,  90,   80,    5;
1, 30, 240,  540,  240,   6;
1, 42, 525, 2240, 2835, 672, 7;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300. Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc. Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Mathematica
    t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017

Formula

T(n,k) = binomial(n+1,n-k+1)*(n-k+1)^k. - R. J. Mathar, Mar 14 2013

A001862 Number of forests of least height with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 26, 111, 562, 3151, 19252, 128449, 925226, 7125009, 58399156, 507222535, 4647051970, 44747776651, 451520086208, 4761032807937, 52332895618066, 598351410294193, 7102331902602676, 87365859333294151, 1111941946738682522, 14621347433458883187
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, Feb 14 2024: (Start)
Also the number of minimal loop-graphs covering n vertices. This is the minimal case of A322661. For example, the a(0) = 1 through a(3) = 7 loop-graphs are (loops represented as singletons):
{} {1} {12} {1-23}
{1-2} {2-13}
{3-12}
{12-13}
{12-23}
{13-23}
{1-2-3}
(End)

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. See (3.3.7): number of ways to cover the complete graph K_n with star graphs.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272.
Without loops we have A053530, minimal case of A369191.
This is the minimal case of A322661.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.

Programs

  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[x Exp[x] - x^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 13 2011 *)
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length@fasmin[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Feb 14 2024 *)

Formula

E.g.f.: exp(x*(exp(x)-x/2)).
Binomial transform of A053530. - Gus Wiseman, Feb 14 2024

Extensions

Formula and more terms from Vladeta Jovovic, Mar 27 2001

A245094 Total squares count in n-th generation of Pythagoras tree variation which is rhombitrihexagonal tiling.

Original entry on oeis.org

1, 2, 4, 8, 13, 20, 24, 27, 33, 36, 42, 45, 51, 54, 60, 63, 69, 72, 78, 81, 87, 90, 96, 99, 105, 108, 114, 117, 123, 126, 132, 135, 141, 144, 150, 153, 159, 162, 168, 171, 177, 180, 186, 189, 195, 198, 204, 207, 213, 216, 222, 225, 231, 234, 240, 243, 249, 252, 258, 261, 267
Offset: 0

Views

Author

Kival Ngaokrajang, Nov 12 2014

Keywords

Comments

Refer to Pythagoras tree (fractal) in the link. In the article "Varying the angle", the construction rule is changed from the standard Pythagoras tree by changing the base angle from 90 degrees to 60 degrees. It is easily seen that the size of the unit squares remains constant and equal to sin(30 degrees)/(1/2) = 1. The first overlap occurs at the fifth generation (n=4). The general pattern produced is the rhombitrihexagonal tiling, an array of hexagons bordered by the constructing squares. a(n) gives total count of squares in n-th generation which excluding the overlap into (n-1)-th generation and count only 1 for the overlap among current one. See illustration.
Conjecture: In the limit n -> infinity this construction produces one of the eight planar semiregular tessellations (one of the 11 Archimedean tessellations, the other three being regular). This is the tessellation (3,4,6,4) because of the sequence of regular 3-, 4- and 6-gons around each vertex. See the Eric Weisstein link. - Wolfdieter Lang, Nov 23 2014

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 6, {1, 2, 4, 8, 13, 20, 24}[[n+1]], a[n-1] + 6 - 3 Mod[n, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2016, adapted from PARI *)
  • PARI
    {a=24;print1("1, 2, 4, 8, 13, 20, ",a,", ");
    for (n=7,100,if (Mod(n,2)==1,d1=3,d1=6);a=a+d1;print1(a,", "))}

Formula

Conjectures from Colin Barker, Nov 12 2014: (Start)
a(n) = 3*((-1)^n + 6*n-5)/4 for n > 5.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 8.
G.f.: (2*x^8 - 4*x^7 - x^6 + 3*x^5 + 3*x^4 + 3*x^3 + x^2 + x + 1) / ((x-1)^2*(x+1)).
(End)
It follows from the above conjecture that this sequence consists of interlaced polynomials for n > 5: a(2n) = 3*(3n-1) and a(2n+1) = 9*n. - Avi Friedlich, May 09 2015

A003481 a(n) = 7*a(n-1) - a(n-2) + 5.

Original entry on oeis.org

2, 20, 143, 986, 6764, 46367, 317810, 2178308, 14930351, 102334154, 701408732, 4807526975, 32951280098, 225851433716, 1548008755919, 10610209857722, 72723460248140, 498454011879263, 3416454622906706, 23416728348467684, 160500643816367087, 1100087778366101930
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033888.

Programs

  • Mathematica
    t = {2, 20}; Do[AppendTo[t, 7*t[[-1]] - t[[-2]] + 5], {n, 2, 30}] (* T. D. Noe, Oct 07 2013 *)
    nxt[{a_,b_}]:={b,7b-a+5}; NestList[nxt,{2,20},30][[All,1]] (* Harvey P. Dale, Aug 11 2019 *)

Formula

G.f.: ( -2-4*x+x^2 ) / ( (x-1)*(x^2-7*x+1) ). - Simon Plouffe in his 1992 dissertation
a(n) = Fibonacci(4(n+1)) - 1 = A033888(n+1) - 1. - Ralf Stephan, Feb 24 2004, index corrected R. J. Mathar, Sep 18 2008

Extensions

More terms from Ralf Stephan, Feb 24 2004

A002777 Restricted permutations.

Original entry on oeis.org

1, 0, 0, 0, 4, 16, 80, 672, 4896, 49920, 460032, 5598720, 62584320, 885381120, 11644323840, 187811205120, 2841958748160, 51481298534400, 881192033648640, 17714783352913920, 338434210452602880, 7477275543168614400
Offset: 0

Views

Author

Keywords

References

  • T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 468.
  • Todd Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003471.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 0$3, 4][n+1],
          (n-1)*a(n-1)+2*`if`(n::even, (n-2)*a(n-3), (n-1)*a(n-2)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 27 2020
  • Mathematica
    nmax = 20; b = ConstantArray[0, nmax+1]; b[[1]] = 1; b[[2]] = 0; b[[3]] = 0; b[[4]] = 0; b[[5]] = 4; Do[b[[n+1]] = (n-1)*b[[n]] + If[EvenQ[n],2*(n-2)*b[[n-2]],2*(n-1)*b[[n-1]]], {n, 5, nmax}]; b (* Vaclav Kotesovec, Mar 07 2014 *)

Formula

a(n) = (n-1)*a(n-1) + 2*(n-d)*a(n-e), where (d, e) = (2, 3) if n even, (1, 2) if n odd.
Recurrence (for n>=7): (3*n^2 - 17*n + 23)*a(n) = (3*n^2 - 17*n + 21)*a(n-1) + (3*n^4 - 23*n^3 + 63*n^2 - 74*n + 34)*a(n-2) - 4*(n-3)*(n-2)*a(n-3) + 2*(n-4)*(n-3)*(3*n^2 - 11*n + 9)*a(n-4). - Vaclav Kotesovec, Mar 07 2014
a(n) ~ c * n!, where c = 5*sinh(sqrt(2))/2^(3/2) - 3*cosh(sqrt(2))/2 = 0.15347184510862040153106983922669125715345689997588202335369... - Vaclav Kotesovec, Mar 07 2014, updated Apr 20 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 24 2001
Previous Showing 11-20 of 27 results. Next