A257285
a(n) = 4*5^n - 3*4^n.
Original entry on oeis.org
1, 8, 52, 308, 1732, 9428, 50212, 263348, 1365892, 7026068, 35916772, 182729588, 926230852, 4681485908, 23608756132, 118849087028, 597466660612, 3000218204948, 15052630632292, 75469311591668, 378171191679172, 1894154493279188, 9483966605929252
Offset: 0
A280209
Numbers m such that 5^m - 4^m is not squarefree, but 5^d - 4^d is squarefree for every proper divisor d of m.
Original entry on oeis.org
2, 55, 171, 183, 203
Offset: 1
2 is in this sequence because 5^1 - 4^1 = 1 is squarefree where 1 is proper divisor of 2 and 5^2 - 4^2 = 9 = 3^2 is not squarefree.
A269732
Dimensions of the 4-polytridendriform operad TDendr_4.
Original entry on oeis.org
1, 9, 101, 1269, 17081, 240849, 3511741, 52515549, 801029681, 12414177369, 194922521301, 3094216933509, 49575333021801, 800645021406369, 13020241953611181, 213025792632813549, 3504075376813414241, 57914491106005287849, 961297812844696640581, 16017765308027639317269, 267831397282643166904601, 4492625888792276208945009, 75578709400747348254905501
Offset: 1
-
I:=[1,9]; [n le 2 select I[n] else (9*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
-
Rest[CoefficientList[Series[(1 - 9*x - Sqrt[1 - 18*x + x^2])/(40*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
Table[-I*LegendreP[n, -1, 2, 9]/(2*Sqrt[5]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 9, (n+1) a[n] == 9 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
-
A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
my(q=4); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
-
my(q=4, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
A248337
a(n) = 6^n - 4^n.
Original entry on oeis.org
0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
Offset: 0
Cf. sequences of the form k^n - 4^n: -
A000302 (k=0), -
A024036 (k=1), -
A020522 (k=2), -
A005061 (k=3),
A005060 (k=5), this sequence (k=6),
A190542 (k=7),
A059409 (k=8),
A118004 (k=9),
A248338 (k=10),
A139742 (k=11), 8*
A016159 (k=12).
-
[6^n-4^n: n in [0..30]];
-
Table[6^n - 4^n, {n,0,30}]
CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x]
LinearRecurrence[{10,-24},{0,2},30] (* Harvey P. Dale, Aug 18 2024 *)
-
vector(20,n,6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
-
A248337=BinaryRecurrenceSequence(10,-24,0,2)
[A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024
A327316
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = ((x+r)^n - (x+s)^n)/(r - s), where r = 3 and s = 2.
Original entry on oeis.org
1, 5, 2, 19, 15, 3, 65, 76, 30, 4, 211, 325, 190, 50, 5, 665, 1266, 975, 380, 75, 6, 2059, 4655, 4431, 2275, 665, 105, 7, 6305, 16472, 18620, 11816, 4550, 1064, 140, 8, 19171, 56745, 74124, 55860, 26586, 8190, 1596, 180, 9, 58025, 191710, 283725, 247080
Offset: 1
First seven rows:
1
5 2
19 15 3
65 76 30 4
211 325 190 50 5
665 1266 975 380 75 6
2059 4655 4431 2275 665 105 7
-
f[x_, n_] := ((x + r)^n - (x + s)^n)/(r - s);
r = 3; s = 2;
Column[Table[Expand[f[x, n]], {n, 1, 5}]]
c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
TableForm[Table[c[x, n], {n, 1, 10}]] (* A327316 array *)
Flatten[Table[c[x, n], {n, 1, 12}]] (* A327316 sequence *)
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A269661
a(n) = Product_{i=1..n} (5^i - 4^i).
Original entry on oeis.org
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269576 (j=4, k=3).
-
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
A061929
Triangle with n >= k >= 0 where a(n,k) = 2^k*3^(n-k)*(C(n+1,0)+C(n+1,1)+...C(n+1,k)).
Original entry on oeis.org
1, 3, 6, 9, 24, 28, 27, 90, 132, 120, 81, 324, 576, 624, 496, 243, 1134, 2376, 3024, 2736, 2016, 729, 3888, 9396, 13824, 14256, 11520, 8128, 2187, 13122, 35964, 60264, 70416, 63072, 47424, 32640, 6561, 43740, 134136, 252720, 331776, 330048, 268416
Offset: 0
Rows start (1), (3,6), (9,24,68), (27,90,132,120) etc.
A228214
Number of second differences of arrays of length n + 2 of numbers in 0..4.
Original entry on oeis.org
17, 177, 1429, 9705, 58141, 320481, 1688101, 8717049, 44633821, 227363409, 1153594261, 5835080169, 29443836301, 148292923329, 745759583941, 3745977788889, 18798608421181, 94267920012849, 472439111692021
Offset: 1
Some solutions for n=4:
..8....5...-1...-2....4...-2....3....0...-2...-6....2....0....4...-5....0...-5
.-8....0....2....2...-5...-4...-4...-2....2....5....2...-2...-3....4....2....5
..5....0....0...-2...-1....7....3....2....4....0...-6....3...-1...-1...-6...-6
.-1...-2...-2....4....2...-3...-3....3...-7...-1....4...-3....6...-1....5....4
A248343
a(n) = 10^n - 8^n.
Original entry on oeis.org
0, 2, 36, 488, 5904, 67232, 737856, 7902848, 83222784, 865782272, 8926258176, 91410065408, 931280523264, 9450244186112, 95601953488896, 964815627911168, 9718525023289344, 97748200186314752, 981985601490518016, 9855884811924144128
Offset: 0
-
[10^n-8^n: n in [0..30]];
-
Table[10^n - 8^n, {n, 0, 25}] (* or *) CoefficientList[Series[2 x/((1 - 8 x) (1 - 10 x)), {x, 0, 30}], x]
LinearRecurrence[{18,-80},{0,2},30] (* Harvey P. Dale, May 21 2018 *)
Comments