cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A001228 Orders of sporadic simple groups.

Original entry on oeis.org

7920, 95040, 175560, 443520, 604800, 10200960, 44352000, 50232960, 244823040, 898128000, 4030387200, 145926144000, 448345497600, 460815505920, 495766656000, 42305421312000, 64561751654400, 273030912000000, 51765179004000000, 90745943887872000, 4089470473293004800, 4157776806543360000, 86775571046077562880, 1255205709190661721292800, 4154781481226426191177580544000000, 808017424794512875886459904961710757005754368000000000
Offset: 1

Views

Author

Keywords

Comments

Numbers of divisors: A174601(n) = A000005(a(n)); squarefree kernels: A174848(n) = A007947(a(n)). - Reinhard Zumkeller, Apr 02 2010
By historical convention, the Tits group is often excluded from the list of sporadic simple groups. It could be inserted as a(7) = 17971200 giving this sequence 27 rather than 26 elements. - Charles R Greathouse IV, Jul 09 2020

Examples

			The first term is 7920 because the order of the sporadic group M_{11} is 7920, the smallest order of any sporadic group.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • Martin Gardner, "The Last Recreations", 1997, chap 9, p. 153.

Crossrefs

Extensions

Entries checked by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004

A001149 A self-generating sequence: a(1)=1, a(2)=2, a(n+1) chosen so that a(n+1)-a(n-1) is the first number not obtainable as a(j)-a(i) for 1<=i

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 17, 26, 34, 45, 54, 67, 81, 97, 115, 132, 153, 171, 198, 228, 256, 288, 323, 357, 400, 439, 488, 530, 581, 627, 681, 732, 790, 843, 908, 963, 1029, 1085, 1152, 1213, 1284, 1346, 1418, 1484, 1561, 1630, 1710, 1785, 1867, 1945, 2034, 2116
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Description corrected and moved to name line by Franklin T. Adams-Watters, Nov 01 2009
More terms from Manfred Scheucher, Jul 01 2015

A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0

Views

Author

Keywords

Comments

Also n-stacks with strictly receding left wall.
Weakly unimodal compositions such that each up-step is by at most 1 (and first part 1). By dropping the requirement for weak unimodality one obtains A005169. - Joerg Arndt, Dec 09 2012
The values of a(19) and a(20) in Auluck's table on page 686 are wrong (they have been corrected here). - David W. Wilson, Mar 07 2015
Also the number of overpartitions of n having more overlined parts than non-overlined parts. For example, a(5) = 5 counts the overpartitions [5'], [4',1'], [3',2'], [3',1',1] and [2',2,1']. - Jeremy Lovejoy, Jan 15 2021

Examples

			For a(6)=8 we have the following stacks:
..x
.xx .xx. ..xx .x... ..x.. ...x. ....x
xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx
From _Franklin T. Adams-Watters_, Jan 18 2007: (Start)
For a(7) = 12 we have the following stacks:
..x. ...x
.xx. ..xx .xxx .xx.. ..xx. ...xx
xxxx xxxx xxxx xxxxx xxxxx xxxxx
and
.x.... ..x... ...x.. ....x. .....x
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A259095.

Programs

  • Maple
    s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i>n, 0, `if`(
          irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] &
    (* Jean-François Alcover, May 19 2011, after Maple prog. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((iMichael Somos, Apr 27 2003 */

Formula

G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
a(n) = sum_{m>0,k>0,2*k^2+k+2*m<=n-1} A008289(m,k)*A000041(n-k*(1+2k)-2*m-1). - [Auluck eq 29]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
a(n) = A143184(n) - A340659(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001

A005579 a(n) = smallest number k such that Product_{i=1..k} prime(i)/(prime(i)-1) > n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0

Views

Author

Keywords

Comments

Laatsch (1986) proved that for n >= 2, a(n) gives the smallest number of distinct prime factors in even numbers having an abundancy index > n.
The abundancy index of a number k is sigma(k)/k. - T. D. Noe, May 08 2006
The first differences of this sequence, A005347, begin the same as the Fibonacci sequence A000045. - T. D. Noe, May 08 2006
Equal to A256968 except for n = 2 and n = 3. See comment in A256968. - Chai Wah Wu, Apr 17 2015

Examples

			The products Product_{i=1..k} prime(i)/(prime(i)-1) for k >= 0 start with 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001611 is similar but strictly different.

Programs

  • Mathematica
    (* For speed and accuracy, the second Mathematica program uses 30-digit real numbers and interval arithmetic. *)
    prod=1; k=0; Table[While[prod<=n, k++; prod=prod*Prime[k]/(Prime[k]-1)]; k, {n,0,25}] (* T. D. Noe, May 08 2006 *)
    prod=Interval[1]; k=0; Table[While[Max[prod]<=n, k++; p=Prime[k]; prod=N[prod*p/(p-1),30]]; If[Min[prod]>n, k, "too few digits"], {n,0,38}]
  • PARI
    a(n)=my(s=1,k); forprime(p=2,, s*=p/(p-1); k++; if(s>n, return(k))) \\ Charles R Greathouse IV, Aug 20 2015
    
  • Python
    from sympy import nextprime
    def a_list(upto: int) -> list[int]:
        L: list[int] = [0]
        count = 1; bn = 1; bd = 1; p = 2
        for k in range(1, upto + 1):
            bn *= p
            bd *= p - 1
            while bn > count * bd:
                L.append(k)
                count += 1
            p = nextprime(p)
        return L
    print(a_list(1000))  # Chai Wah Wu, Apr 17 2015, adapted by Peter Luschny, Jan 25 2025

Formula

a(n) = smallest k such that A002110(k)/A005867(k) > n. - Artur Jasinski, Nov 06 2008
a(n) = PrimePi(A091440(n)) = A000720(A091440(n)) for n >= 4. - Amiram Eldar, Apr 18 2025

Extensions

Edited by T. D. Noe, May 08 2006
a(26) added by T. D. Noe, Sep 18 2008
Typo corrected by Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
a(27)-a(36) from Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
Comment corrected by T. D. Noe, Apr 04 2010
a(37)-a(39) from T. D. Noe, Nov 16 2010
Edited and terms a(0)-a(1) prepended by Max Alekseyev, Jan 25 2025

A005350 a(1) = a(2) = a(3) = 1, a(n) = a(a(n-1)) + a(n-a(n-1)) for n >= 4.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 15, 16, 16, 17, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28
Offset: 1

Views

Author

Keywords

Comments

a(n) - a(n-1) = 0 or 1 (see the 1991 Monthly reference). - Emeric Deutsch, Jun 06 2005

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005350 n = a005350_list !! (n-1)
    a005350_list = 1 : 1 : 1 : h 4 1 where
       h x y = z : h (x + 1) z where z = a005350 y + a005350 (x - y)
    -- Reinhard Zumkeller, Jul 20 2012
    
  • Maple
    A005350 := proc(n) option remember; if n<=3 then 1 else procname(procname(n-1)) + procname(n-procname(n-1)); end if; end proc:
    seq(A005350(n),n=1..64) ;
  • Mathematica
    a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[a[n-1]] + a[n-a[n-1]]; Table[a[n], {n, 1, 64}] (* Jean-François Alcover, Feb 11 2014 *)
  • SageMath
    @CachedFunction
    def a(n): return 1 if (n<4) else a(a(n-1)) + a(n-a(n-1))
    [a(n) for n in range(1,100)]  # G. C. Greubel, Nov 14 2022

A109379 Orders of non-cyclic simple groups (with repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2006

Keywords

Comments

The first repetition is at 20160 (= 8!/2) and the first proof that there exist two nonisomorphic simple groups of this order was given by the American mathematician Ida May Schottenfels (1869-1942). - David Callan, Nov 21 2006
By the Feit-Thompson theorem, all terms in this sequence are even. - Robin Jones, Dec 25 2023

References

  • See A001034 for references and other links.

Crossrefs

Cf. A001034 (orders without repetition), A119648 (orders that are repeated).

A002230 Primes with record values of the least positive primitive root.

Original entry on oeis.org

2, 3, 7, 23, 41, 71, 191, 409, 2161, 5881, 36721, 55441, 71761, 110881, 760321, 5109721, 17551561, 29418841, 33358081, 45024841, 90441961, 184254841, 324013369, 831143041, 1685283601, 6064561441, 7111268641, 9470788801, 28725635761, 108709927561, 386681163961, 1990614824641, 44384069747161, 89637484042681
Offset: 1

Views

Author

Keywords

References

  • R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.

Crossrefs

Cf. A002229 (for the primitive roots in question).
Records in A023048, indices in A114885.

Programs

  • Mathematica
    s = {2}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[p]; AppendTo[s, p]; rm = r], {k, 10^6}]; s (* Jean-François Alcover, Apr 05 2011 *)
    DeleteDuplicates[Table[{p,PrimitiveRoot[p,1]},{p,Prime[Range[61100]]}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* The program generates the first 15 terms of the sequence. *) (* Harvey P. Dale, Aug 22 2022 *)
  • Python
    from sympy import isprime, primitive_root
    from itertools import count, islice
    def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r
    def agen(r=0): yield from ((m, r:=f(m))[0] for m in count(1) if f(m) > r)
    print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 13 2023

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A005181 a(n) = ceiling(exp((n-1)/2)).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 91, 149, 245, 404, 666, 1097, 1809, 2981, 4915, 8104, 13360, 22027, 36316, 59875, 98716, 162755, 268338, 442414, 729417, 1202605, 1982760, 3269018, 5389699, 8886111, 14650720, 24154953, 39824785, 65659970, 108254988, 178482301
Offset: 0

Views

Author

Keywords

Comments

This sequence illustrates the second law of small numbers because it is a coincidence that its first ten terms are the same as the first ten Fibonacci numbers (A000045). - Alonso del Arte, Mar 18 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, pp. 27 Belin-Pour La Science, Paris 2000.

Crossrefs

Programs

  • Maple
    seq(round(ceil(exp((n-1)/2))), n=0..50); # Vladimir Pletser, Sep 15 2013
  • Mathematica
    Table[Ceiling[E^((n - 1)/2)], {n, 0, 39}] (* Alonso del Arte, Mar 18 2013 *)
  • Python
    import math
    for n in range(99):
        print(str(int(math.ceil(math.e**((n-1)*0.5)))), end=', ')
    # Alex Ratushnyak, Mar 18 2013

Formula

Limit_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774. - Alois P. Heinz, Feb 19 2019

Extensions

A few more terms from Alonso del Arte, Mar 18 2013

A119630 Orders of non-Abelian simple groups of rank at least two.

Original entry on oeis.org

60, 168, 360, 2520, 5616, 6048, 7920, 20160, 20160, 25920, 29120, 62400, 95040, 126000, 175560, 181440, 372000, 443520, 604800, 979200, 1451520, 1814400, 1876896, 3265920, 4245696, 4680000, 5515776, 5663616, 6065280, 9999360
Offset: 1

Views

Author

N. J. A. Sloane, Jun 10 2006

Keywords

Comments

This omits (from A001034) only the non-Abelian simple groups of Lie type of rank 1, i.e. the linear groups L(2,q).

Crossrefs

Subsequence of A005180.
Cf. A001034.

A001856 A self-generating sequence: every positive integer occurs as a(i)-a(j) for a unique pair i,j.

Original entry on oeis.org

1, 2, 4, 8, 16, 21, 42, 51, 102, 112, 224, 235, 470, 486, 972, 990, 1980, 2002, 4004, 4027, 8054, 8078, 16156, 16181, 32362, 32389, 64778, 64806, 129612, 129641, 259282, 259313, 518626, 518658, 1037316, 1037349, 2074698, 2074734, 4149468
Offset: 1

Views

Author

Keywords

Comments

This is a B_2 sequence. More economical recursion: a(1)=1, a(2n)=2a(2n-1), a(2n+1)=a(2n)+r(n), where r(n) is the smallest positive integer not of the form a(j)-a(i) with 1<=iA247556. - Thomas Ordowski, Sep 28 2014

References

  • R. K. Guy, Unsolved Problems in Number Theory, E25.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 444.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[n_?OddQ] := a[n] = 2*a[n-1]; a[n_?EvenQ] := a[n] = a[n-1] + r[(n-2)/2]; r[n_] := ( diff = Table[a[j] - a[i], {i, 1, 2*n+1}, {j, i+1, 2*n+1}] // Flatten // Union; max = diff // Last; notDiff = Complement[Range[max], diff]; If[notDiff == {}, max+1, notDiff // First]); Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Dec 31 2012 *)

Formula

a(1)=1, a(2)=2, a(2n+1) = 2a(2n), a(2n+2) = a(2n+1) + r(n), where r(n) = smallest positive number not of form a(j) - a(i) with 1 <= i < j <= 2n+1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 14 2000
Previous Showing 11-20 of 34 results. Next