cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000002 Kolakoski sequence: a(n) is length of n-th run; a(1) = 1; sequence consists just of 1's and 2's.

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Keywords

Comments

Historical note: the sequence might be better called the Oldenburger-Kolakoski sequence, since it was discussed by Rufus Oldenburger in 1939; see links. - Clark Kimberling, Dec 06 2012. However, to avoid confusion, this sequence will be known in the OEIS as the Kolakoski sequence. It is undesirable to have some entries refer to the Oldenburger-Kolakoski sequence and others to the Kolakoski sequence. - N. J. A. Sloane, Nov 22 2017
It is an unsolved problem to show that the density of 1's is equal to 1/2.
A weaker problem is to construct a combinatorial bijection between the set of positions of 1's and the set of positions of 2's. - Gus Wiseman, Mar 01 2016
The sequence is cubefree and all square subwords have lengths which are one of 2, 4, 6, 18 and 54 (see A294447) [Carpi, 1994].
This is a fractal sequence: replace each run with its length and recover the original sequence. - Kerry Mitchell, Dec 08 2005
Kupin and Rowland write: We use a method of Goulden and Jackson to bound freq_1(K), the limiting frequency of 1 in the Kolakoski word K. We prove that |freq_1(K) - 1/2| <= 17/762, assuming the limit exists and establish the semirigorous bound |freq_1(K) - 1/2| <= 1/46. - Jonathan Vos Post, Sep 16 2008
freq_1(K) is conjectured to be 1/2 + O(log(K)) (see PlanetMath link). - Jon Perry, Oct 29 2014
Conjecture: Taking the sequence in word lengths of 10, for example, batch 1-10, 11-20, etc., then there can only be 4, 5 or 6 1's in each batch. - Jon Perry, Sep 26 2012
From Jean-Christophe Hervé, Oct 04 2014: (Start)
The sequence does not contain words of the form ababa, because this would imply the impossible 111 (1 b, 1 a, 1 b) somewhere before. This demonstrates the conjecture made by Jon Perry: more than 6 1's or 6 2's in a word of 10 would necessitate something like aabaabaaba, which would imply the impossible 12121 before (word aabaababaa is also impossible because of ababa). The remark on the sextuplets below even shows that the number of 1's in any 9-tuplet is always 4 or 5.
There are only 6 triples that appear in the sequence (112, 121, 122, 211, 212 and 221); and by the preceding argument, only 18 sextuplets: the 6 double triples (112112, etc.); 112122, 112212, 121122, 121221, 211212, and 211221; and those obtained by reversing the order of the triples (122112, etc.). Regarding the density of 1's in the sequence, these 12 sextuplets all have a density 1/2 of 1's, and the 6 double triples all lead to a word with this exact density after transformation by the Kolakoski rules, for example: 112112 -> 12112122 (4 1's/8); this is because the second triple reverses the numbers of 1's and 2's generated by the first triple. Therefore, the sequence can be split into the double triples on one side, a part whose transformation (which is in the sequence) has a density of 1's of 1/2; and a part with the other sextuplets, which has directly the same density of 1's. (End)
If we map 1 to +1 and 2 to -1, then the mapped sequence would have a [conjectured] mean of 0, since the Kolakoski sequence is [conjectured] to have an equal density (1/2) of 1s and 2s. For the partial sums of this mapped sequence, see A088568. - Daniel Forgues, Jul 08 2015
Looking at the plot for A088568, it seems that although the asymptotic densities of 1s and 2s appear to be 1/2, there might be a bias in favor of the 2s. I.e., D(1) = 1/2 - O(log(n)/n), D(2) = 1/2 + O(log(n)/n). - Daniel Forgues, Jul 11 2015
From Michel Dekking, Jan 31 2018: (Start)
(a(n)) is the unique fixed point of the 2-block substitution beta
11 -> 12
12 -> 122
21 -> 112
22 -> 1122.
A 2-block substitution beta maps a word w(1)...w(2n) to the word
beta(w(1)w(2))...beta(w(2n-1)w(2n)).
If the word has odd length, then the last letter is ignored.
It was noted by me in 1979 in the Bordeaux seminar on number theory that (a(n+1)) is fixed point of the 2-block substitution 11 -> 21, 12 -> 211, 21 -> 221, 22 -> 2211. (End)
Named after the American artist and recreational mathematician William George Kolakoski (1944-1997). - Amiram Eldar, Jun 17 2021

Examples

			Start with a(1) = 1. By definition of the sequence, this says that the first run has length 1, so it must be a single 1, and a(2) = 2. Thus, the second run (which starts with this 2) must have length 2, so the third term must be also be a(3) = 2, and the fourth term can't be a 2, so must be a(4) = 1. Since a(3) = 2, the third run must have length 2, so we deduce a(5) = 1, a(6) = 2, and so on. The correction I made was to change a(4) to a(5) and a(5) to a(6). - _Labos Elemer_, corrected by _Graeme McRae_
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 337.
  • Éric Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
  • F. M. Dekking, What Is the Long Range Order in the Kolakoski Sequence?, in The mathematics of long-range aperiodic order (Waterloo, ON, 1995), 115-125, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, Kluwer Acad. Publ., Dordrecht, 1997. Math. Rev. 98g:11022.
  • Michael S. Keane, Ergodic theory and subshifts of finite type, Chap. 2 of T. Bedford et al., eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 50.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ilan Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 233.

Crossrefs

Cf. A054354, bisections: A100428, A100429.
Cf. A013947, A156077, A234322 (positions, running total and percentage of 1's).
Cf. A118270.
Cf. A049705, A088569 (are either subsequences of A000002? - Jon Perry, Oct 30 2014)
Kolakoski-type sequences using other seeds than (1,2):
A078880 (2,1), A064353 (1,3), A071820 (2,3), A074804 (3,2), A071907 (1,4), A071928 (2,4), A071942 (3,4), A074803 (4,2), A079729 (1,2,3), A079730 (1,2,3,4).
Other self-describing: A001462 (Golomb sequence, see also references therein), A005041, A100144.
Cf. A088568 (partial sums of [3 - 2 * a(n)]).

Programs

  • Haskell
    a = 1:2: drop 2 (concat . zipWith replicate a . cycle $ [1,2]) -- John Tromp, Apr 09 2011
    
  • Maple
    M := 100; s := [ 1,2,2 ]; for n from 3 to M do for i from 1 to s[ n ] do s := [ op(s),1+((n-1)mod 2) ]; od: od: s; A000002 := n->s[n];
    # alternative implementation based on the Cloitre formula:
    A000002 := proc(n)
        local ksu,k ;
        option remember;
        if n = 1 then
            1;
        elif n <=3 then
            2;
        else
            for k from 1 do
                ksu := add(procname(i),i=1..k) ;
                if n = ksu then
                    return (3+(-1)^k)/2 ;
                elif n = ksu+ 1 then
                    return (3-(-1)^k)/2 ;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Nov 15 2014
  • Mathematica
    a[steps_] := Module[{a = {1, 2, 2}}, Do[a = Append[a, 1 + Mod[(n - 1), 2]], {n, 3, steps}, {i, a[[n]]}]; a]
    a[ n_] := If[ n < 3, Max[ 0, n], Module[ {an = {1, 2, 2}, m = 3}, While[ Length[ an] < n, an = Join[ an, Table[ Mod[m, 2, 1], { an[[ m]]} ]]; m++]; an[[n]]]] (* Michael Somos, Jul 11 2011 *)
    n=8; Prepend[ Nest[ Flatten[ Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1] (* Birkas Gyorgy, Jul 10 2012 *)
    KolakoskiSeq[n_Integer] := Block[{a = {1, 2, 2}}, Fold[Join[#1, ConstantArray[Mod[#2, 2, 1], #1[[#2]]]] &, a, Range[3, n]]]; KolakoskiSeq[999] (* Mikk Heidemaa, Nov 01 2024 *) (* Corrected by Giorgos Kalogeropoulos, May 09 2025 *)
  • PARI
    my(a=[1,2,2]); for(n=3,80, for(i=1,a[n],a=concat(a,2-n%2))); a
    
  • PARI
    {a(n) = local(an=[1, 2, 2], m=3); if( n<1, 0, while( #an < n, an = concat( an, vector(an[m], i, 2-m%2)); m++); an[n])};
    
  • Python
    # For explanation see link.
    def Kolakoski():
        x = y = -1
        while True:
            yield [2,1][x&1]
            f = y &~ (y+1)
            x ^= f
            y = (y+1) | (f & (x>>1))
    K = Kolakoski()
    print([next(K) for  in range(100)]) # _David Eppstein, Oct 15 2016

Formula

These two formulas define completely the sequence: a(1)=1, a(2)=2, a(a(1) + a(2) + ... + a(k)) = (3 + (-1)^k)/2 and a(a(1) + a(2) + ... + a(k) + 1) = (3 - (-1)^k)/2. - Benoit Cloitre, Oct 06 2003
a(n+2)*a(n+1)*a(n)/2 = a(n+2) + a(n+1) + a(n) - 3 (this formula doesn't define the sequence, it is just a consequence of the definition). - Benoit Cloitre, Nov 17 2003
a(n+1) = 3 - a(n) + (a(n) - a(n-1))*(a(b(n)) - 1), where b(n) is the sequence A156253. - Jean-Marc Fedou and Gabriele Fici, Mar 18 2010
a(n) = (3 + (-1)^A156253(n))/2. - Benoit Cloitre, Sep 17 2013
Conjectures from Boštjan Gec, Oct 07 2024: (Start)
a(n)*(a(n-1) + a(n-2) - 3) + a(n-1)*a(n-2) + 7 = 3*a(n-1) + 3*a(n-2).
a(n)*(a(n-1) + a(n-2) - 3) = a(n-3)*(a(n-1) + a(n-2) - 3). (End)
Comment from Kevin Ryde, Oct 07 2024: The above formulas are true: The parts identify when terms are same or different and they hold for any sequence of 1's and 2's with run lengths 1 or 2.

Extensions

Minor edits to example and PARI code made by M. F. Hasler, May 07 2014

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A001462 Golomb's sequence: a(n) is the number of times n occurs, starting with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19
Offset: 1

Views

Author

Keywords

Comments

It is understood that a(n) is taken to be the smallest number >= a(n-1) which is compatible with the description.
In other words, this is the lexicographically earliest nondecreasing sequence of positive numbers which is equal to its RUNS transform. - N. J. A. Sloane, Nov 07 2018
Also called Silverman's sequence.
Vardi gives several identities satisfied by A001463 and this sequence.
We can interpret this sequence as a triangle: start with 1; 2,2; 3,3; and proceed by letting the row sum of row m-1 be the number of elements of row m. The partial sums of the row sums give 1, 5, 11, 38, 272, ... Conjecture: this proceeds as Lionel Levine's sequence A014644. See also A113676. - Floor van Lamoen, Nov 06 2005
A Golomb-type sequence, that is, one with the property of being a sequence of run length of itself, can be built over any sequence with distinct terms by repeating each term a corresponding number of times, in the same manner as a(n) is built over natural numbers. See cross-references for more examples. - Ivan Neretin, Mar 29 2015
From Amiram Eldar, Jun 19 2021: (Start)
Named after the American mathematician Solomon Wolf Golomb (1932-2016).
Guy (2004) called it "Golomb's self-histogramming sequence", while in previous editions of his book (1981 and 1994) he called it "Silverman's sequence" after David Silverman. (End)
a(n) is also the number of numbers that occur n times. - Leo Crabbe, Feb 15 2025

Examples

			a(1) = 1, so 1 only appears once. The next term is therefore 2, which means 2 appears twice and so a(3) is also 2 but a(4) must be 3. And so on.
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 4*x^8 + ... - _Michael Somos_, Nov 07 2018
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 10.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E25, p. 347-348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001463 (partial sums) and A262986 (start of first run of length n).
First differences are A088517.
Golomb-type sequences over various substrates (from Glen Whitney, Oct 12 2015):
A000002 and references therein (over periodic sequences),
A109167 (over nonnegative integers),
A080605 (over odd numbers),
A080606 (over even numbers),
A080607 (over multiples of 3),
A169682 (over primes),
A013189 (over squares),
A013322 (over triangular numbers),
A250983 (over integral sums of itself).
Applying "ee Rabot" to this sequence gives A319434.
See also A095114.

Programs

  • Haskell
    a001462 n = a001462_list !! (n-1)
    a001462_list = 1 : 2 : 2 : g 3  where
       g x = (replicate (a001462 x) x) ++ g (x + 1)
    -- Reinhard Zumkeller, Feb 09 2012
    
  • Magma
    [ n eq 1 select 1 else 1+Self(n-Self(Self(n-1))) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    N:= 10000: A001462[1]:= 1: B[1]:= 1: A001462[2]:= 2:
    for n from 2 while B[n-1] <= N do
      B[n]:= B[n-1] + A001462[n];
      for j from B[n-1]+1 to B[n] do A001462[j]:= n end do
    end do:
    seq(A001462[j],j=1..N); # Robert Israel, Oct 30 2012
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[n - 1]]]; Table[ a[n], {n, 84}] (* Robert G. Wilson v, Aug 26 2005 *)
    GolSeq[n_]:=Nest[(k = 0; Flatten[# /. m_Integer :> (ConstantArray[++k,m])]) &, {1, 2}, n]
    GolList=Nest[(k = 0;Flatten[# /.m_Integer :> (ConstantArray[++k,m])]) &, {1, 2},7]; AGolList=Accumulate[GolList]; Golomb[n_]:=Which[ n <= Length[GolList], GolList[[n]], n <= Total[GolList],First[FirstPosition[AGolList, ?(# > n &)]], True, $Failed] (* _JungHwan Min, Nov 29 2015 *)
  • PARI
    a = [1, 2, 2]; for(n=3, 20, for(i=1, a[n], a = concat(a, n))); a /* Michael Somos, Jul 16 1999 */
    
  • PARI
    {a(n) = my(A, t, i); if( n<3, max(0, n), A = vector(n); t = A[i=2] = 2; for(k=3, n, A[k] = A[k-1] + if( t--==0, t = A[i++]; 1)); A[n])}; /* Michael Somos, Oct 21 2006 */
    
  • Python
    a=[0, 1, 2, 2]
    for n in range(3, 21):a+=[n for i in range(1, a[n] + 1)]
    a[1:] # Indranil Ghosh, Jul 05 2017

Formula

a(n) = phi^(2-phi)*n^(phi-1) + E(n), where phi is the golden number (1+sqrt(5))/2 (Marcus and Fine) and E(n) is an error term which Vardi shows is O( n^(phi-1) / log n ).
a(1) = 1; a(n+1) = 1 + a(n+1-a(a(n))). - Colin Mallows
a(1)=1, a(2)=2 and for a(1) + a(2) + ... + a(n-1) < k <= a(1) + a(2) + ... + a(n) we have a(k)=n. - Benoit Cloitre, Oct 07 2003
G.f.: Sum_{n>0} a(n) x^n = Sum_{k>0} x^a(k). - Michael Somos, Oct 21 2006
a(A095114(n)) = n and a(m) < n for m < A095114(n). - Reinhard Zumkeller, Feb 09 2012 [First inequality corrected from a(m) < m by Glen Whitney, Oct 06 2015]
Conjecture: a(n) >= n^(phi-1) for all n. - Jianing Song, Aug 19 2021
a(n) = A095114(n+1) - A095114(n). - Alan Michael Gómez Calderón, Dec 21 2024 after Ralf Stephan

A002858 Ulam numbers: a(1) = 1; a(2) = 2; for n>2, a(n) = least number > a(n-1) which is a unique sum of two distinct earlier terms.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206, 209, 219, 221, 236, 238, 241, 243, 253, 258, 260, 273, 282, 309, 316, 319, 324, 339
Offset: 1

Views

Author

Keywords

Comments

Ulam conjectured that this sequence has density 0. However, calculations up to 6.759*10^8 (Jud McCranie) indicate that the density hovers near 0.074.
A plot of the first 3 million terms shows that they lie very close to the straight line 13.51*n, so even if we cannot prove it, we believe we now know how this sequence grows (see the plots in the links below). - N. J. A. Sloane, Sep 27 2006
After a few initial terms, the sequence settles into a regular pattern of dense clumps separated by sparse gaps, with period 21.601584+. This pattern continues up to at least a(n) = 5*10^6. (This comment is just a qualitative statement about the wavelike distribution of Ulam numbers, not meant to imply that every period includes Ulam numbers.) - David W. Wilson
_Don Knuth_ (Sep 26 2006) remarks that a(4952)=64420 and a(4953)=64682 (a gap of more than ten "dense clumps"); and there is a gap of 315 between a(18857) and a(18858).
1,2,3,47 are the only values of x < 6.759*10^8 such that x and x+1 are both Ulam numbers. - Jud McCranie, Jun 08 2001. This holds through the first 28 billion Ulam numbers - Jud McCranie, Jan 07 2016.
From Jud McCranie on David W. Wilson's illustration, Jun 20 2008: (Start)
The integers are shown from left to right, top to bottom, with a dot where there is an Ulam number. I think his plot is 216 wide. The local density of Ulam numbers goes in waves with a period of 21.6+, so his plot shows ten cycles.
When they are arranged that way you can see the waves. The crests of the density waves don't always have Ulam numbers there but the troughs are practically void of Ulam numbers. I noticed that the ratio of that period (21.6+) to the frequency of Ulam numbers (1 in 13.52) is very close to 8/5. (End)
a(50000000) = 675904508. - Jud McCranie, Feb 29 2012
a(100000000) = 1351856726. - Jud McCranie, Jul 31 2012
a(1000000000) = 13517664323. - Jud McCranie, Aug 28 2015
a(28000000000) = 378485625853 - Philip Gibbs & Jud McCranie, Sep 09 2015
3 (=1+2) and 131 (=62+69) are the only two Ulam numbers in the first 28 billion Ulam numbers that are the sum of two consecutive Ulam numbers. - Jud McCranie, Jan 09 2016
Named after the Polish-American scientist Stanislaw Ulam (1909-1984). - Amiram Eldar, Jun 08 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.2.
  • Richard K. Guy, Unsolved Problems in Number Theory, C4.
  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Section 7.1.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 116.
  • Marvin C. Wunderlich, The improbable behavior of Ulam's summation sequence, pp. 249-257 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • David Zeitlin, Ulam's sequence {U_n}, U_1=1, U_2=2, is a complete sequence, Notices Amer. Math. Soc., 22 (No. 7, 1975), Abstract 75T-A267, p. A-707.

Crossrefs

Cf. A002859 (version beginning 1,3), A054540, A003667, A001857, A007300, A117140, A214603.
First differences: A072832, A072540.
Cf. A080287, A080288, A004280 (if distinct removed from definition).
See also the density plots in A080573 and A285884.

Programs

  • Haskell
    a002858 n = a002858_list !! (n-1)
    a002858_list = 1 : 2 : ulam 2 2 a002858_list
    ulam :: Int -> Integer -> [Integer] -> [Integer]
    ulam n u us = u' : ulam (n + 1) u' us where
       u' = f 0 (u+1) us'
       f 2 z _                         = f 0 (z + 1) us'
       f e z (v:vs) | z - v <= v       = if e == 1 then z else f 0 (z + 1) us'
                    | z - v `elem` us' = f (e + 1) z vs
                    | otherwise        = f e z vs
       us' = take n us
    -- Reinhard Zumkeller, Nov 03 2011
    
  • Julia
    function isUlam(u, n, h, i, r)
        h == 2 && return false
        ur = u[r]; ui = u[i]
        ur <= ui && return h == 1
        if ur + ui > n
            r -= 1
        elseif ur + ui < n
            i += 1
        else
            h += 1; i += 1; r -= 1
        end
        isUlam(u, n, h, i, r)
    end
    function UlamList(len)
        u = Array{Int, 1}(undef, len)
        u[1] = 1; u[2] = 2; i = 2; n = 2
        while i < len
            n += 1
            if isUlam(u, n, 0, 1, i)
                i += 1
                u[i] = n
            end
        end
        return u
    end
    println(UlamList(59)) # Peter Luschny, Apr 07 2019
    
  • Maple
    UlamList := proc(len) local isUlam, nextUlam, behead; behead := u -> u[2..numelems(u)]; isUlam := proc(n, h, u, r) local hu, tu, hr, tr; hu := u[1]; hr := r[1]; if h = 2 then return false fi; if hr <= hu then return evalb(h = 1) fi; if (hr + hu) = n then tu := behead(u); tr := behead(r); return isUlam(n, h+1, tu, tr) fi; if (hr + hu) < n then tu := behead(u): return isUlam(n, h, tu, r) fi; tr := behead(r); isUlam(n, h, u, tr) end: nextUlam := proc(n, u, r) if isUlam(n, 0, u, r) then if nops(u) = len-1 then return [op(u), n] fi; nextUlam(n+1, [op(u), n], [n, op(r)]) else nextUlam(n+1, u, r) fi end: nextUlam(3, [1, 2], [2, 1]) end:
    UlamList(59); # Peter Luschny, Apr 05 2019
  • Mathematica
    Ulam4Compiled = Compile[{{nmax, _Integer}, {init, _Integer, 1}, {s, _Integer}}, Module[{ulamhash = Table[0, {nmax}], ulam = init}, ulamhash[[ulam]] = 1; Do[ If[Quotient[Plus @@ ulamhash[[i - ulam]], 2] == s, AppendTo[ulam, i]; ulamhash[[i]] = 1], {i, Last[init] + 1, nmax}]; ulam]]; ulams = Ulam4Compiled[355, {1, 2}, 1]
    (* Second program: *)
    ulams = {1, 2}; Do[AppendTo[ulams, n = Last[ulams]; While[n++; Length[DeleteCases[Intersection[ulams, n - ulams], n/2, 1, 1]] != 2]; n], {100}]; ulams (* Jean-François Alcover, Sep 08 2011 *)
    findUlams[s_List, j_Integer] := Block[{k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ Count[ss, k] != 1, k++]; Append[s, k]]; ulams = Nest[findUlams[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
  • PARI
    aupto(N)= my(seen=vector(N), U=[]); seen[1]=seen[2]=1; for(i=1,N, if(1==seen[i], for(j=1,#U, my(sum=i+U[j]); if(sum>N, break); seen[sum]++); U=concat(U,i))); U \\ Ruud H.G. van Tol, Dec 29 2022
  • Python
    def isUlam(n, h, u, r):
        if h == 2: return False
        hu = u[0]; hr = r[0]
        if hr <= hu: return h == 1
        if hr + hu > n: r = r[1:]
        elif hr + hu < n: u = u[1:]
        else: h += 1; r = r[1:]; u = u[1:]
        return isUlam(n, h, u, r)
    def UlamList(length):
        u = [1, 2]; r = [2, 1]; n = 2
        while len(u) < length:
            n += 1
            if isUlam(n, 0, u[:], r[:]):
                u.append(n); r.insert(0, n)
        return u
    print(UlamList(59)) # Peter Luschny, Apr 06 2019
    

Extensions

More terms from Jud McCranie

A001285 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and 2's.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Or, follow a(0), ..., a(2^k-1) by its complement.
Equals limiting row of A161175. - Gary W. Adamson, Jun 05 2009
Parse A010060 into consecutive pairs: (01, 10, 10, 01, 10, 01, ...); then apply the rules: (01 -> 1; 10 ->2), obtaining (1, 2, 2, 1, 2, 1, 1, ...). - Gary W. Adamson, Oct 25 2010

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
  • A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010060 for 0, 1 version, which is really the main entry for this sequence; also A003159. A225186 (squares).
A026465 gives run lengths.
Cf. A010059 (1, 0 version).
Cf. A161175. - Gary W. Adamson, Jun 05 2009
Cf. A026430 (partial sums).
Boustrophedon transforms: A230958, A029885.

Programs

  • Haskell
    a001285 n = a001285_list !! n
    a001285_list = map (+ 1) a010060_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A001285 := proc(n) option remember; if n=0 then 1 elif n mod 2 = 0 then A001285(n/2) else 3-A001285((n-1)/2); fi; end;
    s := proc(k) local i, ans; ans := [ 1,2 ]; for i from 0 to k do ans := [ op(ans),op(map(n->if n=1 then 2 else 1 fi, ans)) ] od; RETURN(ans); end; t1 := s(6); A001285 := n->t1[n]; # s(k) gives first 2^(k+2) terms
  • Mathematica
    Nest[ Flatten@ Join[#, # /. {1 -> 2, 2 -> 1}] &, {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
    a[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Jul 02 2019 *)
    ThueMorse[Range[0,120]]+1 (* Harvey P. Dale, May 07 2021 *)
  • PARI
    a(n)=1+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)%2)%3
    
  • PARI
    a(n)=hammingweight(n)%2+1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from itertools import islice
    def A001285_gen(): # generator of terms
        yield 1
        blist = [1]
        while True:
            c = [3-d for d in blist]
            blist += c
            yield from c
    A001285_list = list(islice(A001285_gen(),30)) # Chai Wah Wu, Nov 13 2022
    
  • Python
    def A001285(n): return 2 if n.bit_count()&1 else 1 # Chai Wah Wu, Mar 01 2023

Formula

a(2n) = a(n), a(2n+1) = 3 - a(n), a(0) = 1. Also, a(k+2^m) = 3 - a(k) if 0 <= k < 2^m.
a(n) = 1 + A010060(n).
a(n) = 2 - A010059(n) = 1/2*(3 - (-1)^A000120(n)). - Ralf Stephan, Jun 20 2003
a(n) = (Sum{k=0..n} binomial(n, k) mod 2) mod 3 = A001316(n) mod 3. - Benoit Cloitre, May 09 2004
G.f.: (3/(1 - x) - Product_{k>=0} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019

A005282 Mian-Chowla sequence (a B_2 sequence): a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that the pairwise sums of elements are all distinct.

Original entry on oeis.org

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970, 1016, 1159, 1312, 1395, 1523, 1572, 1821, 1896, 2029, 2254, 2379, 2510, 2780, 2925, 3155, 3354, 3591, 3797, 3998, 4297, 4433, 4779, 4851
Offset: 1

Views

Author

Keywords

Comments

An alternative definition is to start with 1 and then continue with the least number such that all pairwise differences of distinct elements are all distinct. - Jens Voß, Feb 04 2003. [However, compare A003022 and A227590. - N. J. A. Sloane, Apr 08 2016]
Rachel Lewis points out [see link] that S, the sum of the reciprocals of this sequence, satisfies 2.158435 <= S <= 2.158677. Similarly, the sum of the squares of reciprocals of this sequence converges to approximately 1.33853369 and the sum of the cube of reciprocals of this sequence converges to approximately 1.14319352. - Jonathan Vos Post, Nov 21 2004; comment changed by N. J. A. Sloane, Jan 02 2020
Let S denote the reciprocal sum of a(n). Then 2.158452685 <= S <= 2.158532684. - Raffaele Salvia, Jul 19 2014
From Thomas Ordowski, Sep 19 2014: (Start)
Known estimate: n^2/2 + O(n) < a(n) < n^3/6 + O(n^2).
Conjecture: a(n) ~ n^3 / log(n)^2. (End)

Examples

			The second term is 2 because the 3 pairwise sums 1+1=2, 1+2=3, 2+2=4 are all distinct.
The third term cannot be 3 because 1+3 = 2+2. But it can be 4, since 1+4=5, 2+4=6, 4+4=8 are distinct and distinct from the earlier sums 1+1=2, 1+2=3, 2+2=4.
		

References

  • P. Erdős and R. Graham, Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathématique (1980).
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.20.2.
  • R. K. Guy, Unsolved Problems in Number Theory, E28.
  • A. M. Mian and S. D. Chowla, On the B_2-sequences of Sidon, Proc. Nat. Acad. Sci. India, A14 (1944), 3-4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of A347570.
Cf. A051788, A080200 (for differences between terms).
Different from A046185. Cf. A011185.
See also A003022, A227590.
A259964 has a greater sum of reciprocals.
Cf. A002858.

Programs

  • Haskell
    import Data.Set (Set, empty, insert, member)
    a005282 n = a005282_list !! (n-1)
    a005282_list = sMianChowla [] 1 empty where
       sMianChowla :: [Integer] -> Integer -> Set Integer -> [Integer]
       sMianChowla sums z s | s' == empty = sMianChowla sums (z+1) s
                            | otherwise   = z : sMianChowla (z:sums) (z+1) s
          where s' = try (z:sums) s
                try :: [Integer] -> Set Integer -> Set Integer
                try []     s                      = s
                try (x:sums) s | (z+x) `member` s = empty
                               | otherwise        = try sums $ insert (z+x) s
    -- Reinhard Zumkeller, Mar 02 2011
    
  • Maple
    a[1]:= 1: P:= {2}: A:= {1}:
    for n from 2 to 100 do
      for t from a[n-1]+1 do
        Pt:= map(`+`,A union {t},t);
        if Pt intersect P = {} then break fi
      od:
      a[n]:= t;
      A:= A union {t};
      P:= P union Pt;
    od:
    seq(a[n],n=1..100); # Robert Israel, Sep 21 2014
  • Mathematica
    t = {1}; sms = {2}; k = 1; Do[k++; While[Intersection[sms, k + t] != {}, k++]; sms = Join[sms, t + k, {2 k}]; AppendTo[t, k], {49}]; t (* T. D. Noe, Mar 02 2011 *)
  • PARI
    A005282_vec(N, A=[1], U=[0], D(A, n=#A)=vector(n-1, k, A[n]-A[n-k]))={ while(#A2 && U=U[k-1..-1]);A} \\ M. F. Hasler, Oct 09 2019
    
  • PARI
    aupto(L)= my(S=vector(L), A=[1]); for(i=2, L, for(j=1, #A, if(S[i-A[j]], next(2))); for(j=1, #A, S[i-A[j]]=1); A=concat(A, i)); A \\ Ruud H.G. van Tol, Jun 30 2025
    
  • Python
    from itertools import count, islice
    def A005282_gen(): # generator of terms
        aset1, aset2, alist = set(), set(), []
        for k in count(1):
            bset2 = {k<<1}
            if (k<<1) not in aset2:
                for d in aset1:
                    if (m:=d+k) in aset2:
                        break
                    bset2.add(m)
                else:
                    yield k
                    alist.append(k)
                    aset1.add(k)
                    aset2 |= bset2
    A005282_list = list(islice(A005282_gen(),30)) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A025582(n) + 1.
a(n) = (A034757(n)+1)/2.

Extensions

Examples added by N. J. A. Sloane, Jun 01 2008

A001614 Connell sequence: 1 odd, 2 even, 3 odd, ...

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Next (2n-1) odd numbers alternating with next 2n even numbers. Squares (A000290(n)) occur at the A000217(n)-th entry. - Lekraj Beedassy, Aug 06 2004. - Comment corrected by Daniel Forgues, Jul 18 2009
a(t_n) = a(n(n+1)/2) = n^2 relates squares to triangular numbers. - Daniel Forgues
The natural numbers not included are A118011(n) = 4n - a(n) as n=1,2,3,... - Paul D. Hanna, Apr 10 2006
As a triangle with row sums = A069778 (1, 6, 21, 52, 105, ...): /Q 1;/Q 2, 4;/Q 5, 7, 9;/Q 10, 12, 14, 16;/Q ... . - Gary W. Adamson, Sep 01 2008
The triangle sums, see A180662 for their definitions, link the Connell sequence A001614 as a triangle with six sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
a(n) = A122797(n) + n - 1. - Reinhard Zumkeller, Feb 12 2012

Examples

			From _Omar E. Pol_, Aug 13 2013: (Start)
Written as a triangle the sequence begins:
   1;
   2,  4;
   5,  7,  9;
  10, 12, 14, 16;
  17, 19, 21, 23, 25;
  26, 28, 30, 32, 34, 36;
  37, 39, 41, 43, 45, 47, 49;
  50, 52, 54, 56, 58, 60, 62, 64;
  65, 67, 69, 71, 73, 75, 77, 79, 81;
  82, 84, 86, 88, 90, 92, 94, 96, 98, 100;
  ...
Right border gives A000290, n >= 1.
(End)
		

References

  • C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
  • C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117384, A118011 (complement), A118012.
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Triangle sums (see the comments): A069778 (Row1), A190716 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2), A000292 (Related to Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4), A190717 (Related to Ca1, Ca2, Ze3, Ze4), A190718 (Related to Gi1 and Gi2). (End)

Programs

  • Haskell
    a001614 n = a001614_list !! (n-1)
    a001614_list = f 0 0 a057211_list where
       f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c)
    -- Reinhard Zumkeller, Dec 30 2011
    
  • Magma
    [2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
    
  • Maple
    A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n),n=1..67); # Johannes W. Meijer, May 20 2011
  • Mathematica
    lst={};i=0;For[j=1, j<=4!, a=i+1;b=j;k=0;For[i=a, i<=9!, k++;AppendTo[lst, i];If[k>=b, Break[]];i=i+2];j++ ];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
    row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
  • PARI
    a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from math import isqrt
    def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A005843(n) - A002024(n). - Lekraj Beedassy, Aug 06 2004
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f.: 2*x/(1-x)^2 - (x/(1-x))*Sum_{n>=0} x^(n*(n+1)/2) = 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum_{i=0..n-2} A023531(i). (End)
a(n) = 3*n-A014132(n). - Chai Wah Wu, Oct 19 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001

A001468 There are a(n) 2's between successive 1's.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The Fibonacci word on the alphabet {2,1}, with an extra 1 in front. - Michel Dekking, Nov 26 2018
Start with 1, apply 1->12, 2->122, take limit. - Philippe Deléham, Sep 23 2005
Also number of occurrences of n in Hofstadter G-sequence (A005206) and in A019446. - Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
A block-fractal sequence: every block occurs infinitely many times. Also a reverse block-fractal sequence. See A280511. - Clark Kimberling, Jan 06 2017

References

  • D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
  • D. R. Hofstadter, personal communication, Jul 15 1977.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A014675 if initial 1 is deleted. Cf. A003849, A000201, A280511.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    import Data.List (group)
    a001468 n = a001468_list !! n
    a001468_list = map length $ group a005206_list
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Maple
    Digits := 100: t := evalf( (1+sqrt(5))/2); A001468 := n-> floor((n+1)*t)-floor(n*t);
  • Mathematica
    Table[Floor[GoldenRatio*(n + 1)] - Floor[GoldenRatio*n], {n, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 2, 2}}] &, {1}, 6] (* Robert G. Wilson v, May 20 2014 and corrected Apr 24 2017 following Clark Kimberling's email of Mar 22 2017 *)
    SubstitutionSystem[{1->{1,2},2->{1,2,2}},{1},{6}][[1]] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    a=[1];for(i=1,30,a=concat([a,vector(a[i],j,2),1]));a \\ Or compute as A001468(n)=A201(n+1)-A201(n) with A201(n)=(n+sqrtint(5*n^2))\2, working for n>=0 although A000201 is defined for n>=1. - M. F. Hasler, Oct 13 2017
    
  • Python
    def A001468(length):
        a = [1]
        for i in range(length):
            for _ in range(a[i]):
                a.append(2)
            a.append(1)
            if len(a)>=length:
                break
        return a[:length] # Nicholas Stefan Georgescu, Jun 02 2022
    
  • Python
    from math import isqrt
    def A001468(n): return (n+1+isqrt(m:=5*(n+1)**2)>>1)-(n+isqrt(m-10*n-5)>>1) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = [(n+1) tau] - [n tau], tau = (1 + sqrt 5)/2 = A001622, [] = floor function.
a(n) = A000201(n+1) - A000201(n) = A022342(n+1) - A022342(n), n >= 1; i.e., the first term discarded, this yields the first differences of A000201 and A022342. - M. F. Hasler, Oct 13 2017

Extensions

Rechecked by N. J. A. Sloane, Nov 07 2001

A001030 Fixed under 1 -> 21, 2 -> 211.

Original entry on oeis.org

2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

If treated as the terms of a continued fraction, it converges to approximately
2.57737020881617828717350576260723346479894963737498275232531856357441\
7024804797827856956758619431996. - Peter Bertok (peter(AT)bertok.com), Nov 27 2001
There are a(n) 1's between successive 2's. - Eric Angelini, Aug 19 2008
Same sequence where 1's and 2's are exchanged: A001468. - Eric Angelini, Aug 19 2008

References

  • Midhat J. Gazale, Number: From Ahmes to Cantor, Section on 'Cleavages' in Chapter 6, Princeton University Press, Princeton, NJ 2000, pp. 203-211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Length of the sequence after 'n' substitution steps is given by the terms of A000129.
Equals A004641(n) + 1.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    Following Spage's PARI program.
    a001030 n = a001030_list !! (n-1)
    a001030_list = [2, 1, 1, 2] ++ f [2] [2, 1, 1, 2] where
       f us vs = ws ++ f vs (vs ++ ws) where
                 ws = 1 : us ++ 1 : vs
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    ('n' is the number of substitution steps to perform.) Nest[Flatten[ # /. {1 -> {2, 1}, 2 -> {2, 1, 1}}] &, {1}, n]
    SubstitutionSystem[{1->{2,1},2->{2,1,1}},{2},{6}][[1]] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    /* Fast string concatenation method giving e.g. 5740 terms in 8 iterations */
    a="2";b="2,1,1,2";print1(b);for(x=1,8,c=concat([",1,",a,",1,",b]);print1(c);a=b;b=concat(b,c)) \\ K. Spage, Oct 08 2009
    
  • Python
    from math import isqrt
    def A001030(n): return [2, 1, 1, 2, 1, 2, 1, 2][n-1] if n < 9 else -isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = -1 + floor(n*(1+sqrt(2))+1/sqrt(2))-floor((n-1)*(1+sqrt(2))+1/sqrt(2)). - Benoit Cloitre, Jun 26 2004. [I don't know if this is a theorem or a conjecture. - N. J. A. Sloane, May 14 2008]
This is a theorem, following from Hofstadter's Generalized Fundamental Theorem of eta-sequences on page 10 of Eta-Lore. See also de Bruijn's paper from 1981 (hint from Benoit Cloitre). - Michel Dekking, Jan 22 2017

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Nov 27 2001

A054540 A list of equal temperaments (equal divisions of the octave) whose nearest scale steps are closer and closer approximations to the six simple ratios of musical harmony: 6/5, 5/4, 4/3, 3/2, 8/5 and 5/3.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 19, 31, 34, 53, 118, 171, 289, 323, 441, 612, 730, 1171, 1783, 2513, 4296, 12276, 16572, 20868, 25164, 46032, 48545, 52841, 73709, 78005, 151714, 229719, 537443, 714321, 792326, 944040, 1022045, 1251764, 3755292, 3985011
Offset: 0

Views

Author

Mark William Rankin (MarkRankin95511(AT)Yahoo.com), Apr 09 2000; Dec 17 2000

Keywords

Comments

The sequence was found by a computer search of all of the equal divisions of the octave from 1 to over 3985011. There seems to be a hidden aspect or mystery here: what is it about the more and more harmonious equal temperaments that causes them to express themselves collectively as a perfect, self-accumulating recurrent sequence?
From Eliora Ben-Gurion, Dec 15 2022: (Start)
The answer is because temperament mappings can be added. If harmonic correspondences are written in a bra, that is
Example: a tuning with 118 equal steps to the octave has a second harmonic on the 118th step by definition, the third harmonic is approximated with 187 steps, and the fifth is with 274 steps, which leads to <118 187 274]. A 171 equal division system will have a corresponding bra <171 271 397]. When these two are added, we obtain <289 458 671], which is exactly how the 2nd, 3rd, and 5th harmonics are represented in 289 equal divisions of the octave. (End)

Examples

			34 = 31 + the earlier term 3. Again, 118 = 53 + the earlier terms 34 and 31.
		

Formula

Stochastic recurrence rule - the next term equals the current term plus one or more previous terms: a(n+1) = a(n) + a(n-x) + ... + a(n-y) + ... + a(n-z), etc.
Showing 1-10 of 17 results. Next