cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 250 results. Next

A195324 Even numbers that cannot be represented as the sum of an odd prime and a safe prime (A005385).

Original entry on oeis.org

2, 4, 6, 32, 56, 92, 98, 122, 128, 140, 152, 176, 194, 212, 224, 242, 254, 260, 272, 296, 302, 308, 326, 332, 368, 392, 398, 410, 422, 434, 452, 458, 476, 488, 500, 512, 518, 524, 536, 542, 560, 572, 596, 602, 632, 644, 656, 662, 674, 686, 692, 704, 710, 728
Offset: 1

Views

Author

Dan Brumleve, Sep 15 2011

Keywords

Crossrefs

Cf. A000040 (primes), A005385 (safe primes).

Programs

  • Haskell
    a195324 n = a195324_list !! (n-1)
    a195324_list = filter p [2,4..] where
       p n = all ((== 0) . a010051) $ takeWhile (> 1) $ map (n -) a005385_list
    -- Reinhard Zumkeller, Sep 18 2011
  • Mathematica
    mx = 1000; safe = Select[Prime[Range[PrimePi[mx]]], PrimeQ[(# - 1)/2] &]; p = Prime[Range[2, PrimePi[mx]]]; Complement[Range[2, mx, 2], Union[Flatten[Outer[Plus, p, t]]]] (* T. D. Noe, Sep 15 2011 *)

A227853 Numbers k such that 4620*k - 1 is a safe prime (A005385).

Original entry on oeis.org

5, 9, 10, 20, 24, 39, 49, 50, 58, 67, 79, 88, 91, 97, 98, 103, 116, 117, 134, 136, 137, 143, 148, 149, 180, 181, 182, 193, 201, 213, 230, 234, 239, 247, 253, 261, 265, 267, 275, 284, 285, 286, 288, 296, 301, 304, 313, 321, 325, 339, 347
Offset: 1

Views

Author

M. F. Hasler, Oct 31 2013

Keywords

Comments

The given expression seems to produce safe primes quite frequently. The numbers 6*(4620*a(n)-1) form a subsequence of A230032.
Note that 4620 = 2^2*3*5*7*11.
Is a(4135..4139) = 59497..59501 the only set of 5 terms with common difference = 1? Checked for all terms up to 10^7. - Zak Seidov, Nov 02 2013
This is common because 4620 = 12*5*7*11 contains several small prime factors, which reduces the possible 12x-1 remainders, forcing all safe primes to be in other 12x-1 remainders mod 4620. Something similar would happen if 4620 were replaced with 12*5*7*13 = 5460. - Mark Andreas, Dec 31 2021

Crossrefs

Programs

  • PARI
    {f=4*3*5*7*11; for(k=1,2000,isprime(p=k*f-1)&&isprime(p\2)&&print1(k","))}

A284660 Terms of A161897 that are not in A005385.

Original entry on oeis.org

3083, 4931, 6563, 9923, 166667, 865643, 1306667, 2266883, 3367367, 3906563, 4128959, 5493179, 5591039, 6040187, 9122963, 9402179, 9871403, 10174343, 13081379, 13756403, 14924003, 16550243, 24165287, 29492747, 32140859, 34633427, 38425643, 42249587, 42258779, 43014659, 45067523, 52678643
Offset: 1

Views

Author

Robert Israel, Mar 31 2017

Keywords

Comments

Primes p such that q = (p-1)/2 is composite, 3^q == 1 (mod p) and 3^(q-1) == 1 (mod p-1).
All terms == 5 (mod 6).

Examples

			p = 3083 is in the sequence because it is prime, q = (3083-1)/2 = 23*67 is composite, 3^q == 1 (mod p) and 3^(q-1) == 1 mod (p-1).
		

Crossrefs

Programs

  • Maple
    filter:= p -> isprime(p) and not isprime((p-1)/2) and
       3&^((p-3)/2)  mod (p-1) = 1 and
       3 &^((p-1)/2) mod p = 1;
    select(filter, [seq(p, p=5..10^7, 6)]); # Robert Israel, Mar 31 2017

A066868 a(n) is the least k such that n + Sum_{i=1..k} A005385(i) is prime; or 0 if none exists.

Original entry on oeis.org

2, 1, 10, 5, 2, 1, 2, 1, 12, 5, 2, 1, 4, 1, 4, 5, 2, 1, 2, 3, 4, 7, 12, 1, 2, 1, 4, 7, 2, 3, 2, 1, 4, 5, 2, 1, 4, 1, 6, 17, 2, 1, 4, 3, 6, 5, 2, 1, 2, 3, 4, 11, 12, 1, 2, 1, 4, 5, 2, 3, 2, 1, 4, 5, 14, 1, 2, 1, 10, 5, 2, 7, 10, 1, 6, 7, 2, 1, 8, 3, 4, 7, 26, 1
Offset: 1

Views

Author

Joseph L. Pe, Jan 21 2002

Keywords

Comments

Conjecture: a(n) is nonzero for all n, so every n can be represented as the difference between a prime and a partial sum of the safe primes series. See A066753 for a similar conjecture.

Examples

			4 + (5 + 7 + 11 + 23 + 47) = 97, a prime and 5 consecutive safe primes, starting from the first safe prime 5, are needed to achieve this. Hence a(4) = 5.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=3, s=n); for(k=1, oo, until(isprime((p-1)/2), p=nextprime(p+1)); if(isprime(s+=p), return(k))); \\ Jinyuan Wang, Jul 30 2020

Extensions

Offset changed to 1 by Jinyuan Wang, Jul 30 2020

A075707 Safe primes (A005385) (p and (p-1)/2 are primes) such that 12*p+1 is also prime.

Original entry on oeis.org

5, 23, 59, 83, 383, 479, 503, 719, 839, 863, 1619, 2039, 2099, 2579, 2819, 2879, 3023, 4139, 4259, 4679, 4703, 4919, 5879, 6719, 6779, 7559, 8039, 8783, 8819, 10799, 11279, 11423, 12203, 12659, 12899, 12983, 13523, 13799, 14159, 14303, 14699, 15683, 18119, 18443, 19259, 19379, 20183, 20663, 21059, 23663, 24083, 24239, 24659, 27239, 28163, 29123, 29339, 29483, 29759, 30803, 31139, 31583, 36923, 37463, 38603, 39119, 39503, 39839, 39983, 41879, 42299, 42443, 43403, 44519, 44939, 46679, 47339, 47819, 47963
Offset: 1

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			23 is a prime, so is (23-1)/2=11 and also 12*23+1=277, 59 is a prime, (59-1)/2=29 and 12*59+1=709, ...
		

Crossrefs

Programs

  • Maple
    ts_sgB_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sgB_var_pras(i), i=1..3000);
  • Mathematica
    okQ[n_]:=PrimeQ[(n-1)/2]&&PrimeQ[12n+1]
    Select[Prime[Range[5000]],okQ] (* Harvey P. Dale, Nov 21 2010 *)

Extensions

More terms from Harvey P. Dale, Nov 21 2010

A347226 Safe primes (A005385) that are half-period primes (A097443).

Original entry on oeis.org

83, 107, 227, 347, 359, 467, 479, 563, 587, 719, 839, 1187, 1283, 1307, 1319, 1439, 1523, 1907, 2027, 2039, 2879, 2963, 2999, 3119, 3203, 3467, 3803, 3947, 4079, 4283, 4547, 4679, 4787, 4799, 4919, 5387, 5399, 5483, 5507, 5639, 5879, 6599, 6719, 6827, 7079, 7187, 7523
Offset: 1

Views

Author

Lamine Ngom, Aug 24 2021

Keywords

Comments

Apart from 5 and 11, a safe prime p is necessarily either a full reptend prime (A001913) or a half-period prime (A097443) since (p-1) is semiprime: 2*A005384(n) (Sophie Germain primes).
Safe primes being full reptend primes are listed in A000353.
a(n) is of the form 100*k + 10*{0, 2, 4, 6, 8} + {3, 7} or 100*k + 10*{1, 3, 5, 7, 9} + 9.
Number of terms < 10^k: 0, 1, 11, 56, 343, 2138, 15267, 114847, 886907, 7079602, ...

Examples

			(107-1)/2 = 53 is a prime, and the periodic part of the decimal expansion of 1/107 is of length 53.
Hence the safe prime 107 is in the sequence.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime((t - 1)/2) and numtheory:-order(10, t) = (t - 1)/2, [seq(t, t = 3 .. 10000, 2)]);
  • Mathematica
    Select[Prime@Range@1000,PrimeQ[(#-1)/2]&&Length[First@@RealDigits[1/#]]==(#-1)/2&] (* Giorgos Kalogeropoulos, Sep 14 2021 *)

Formula

A005385 INTERSECTION A097443.
a(n) == {17, 23, 29} mod 30.
a(n) == 11 (mod 12). - Hugo Pfoertner, Aug 24 2021

A373063 Greatest k >= 1 such that (p + 1 - 2^i) / 2^i is prime for i = 1..k and p is prime from A005385.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Ctibor O. Zizka, May 21 2024

Keywords

Comments

"k-safe primes" iff (p + 1 - 2^i) / 2^i is prime for i = 0..k, p a prime number. A000040 are 0-safe primes, A005385 are 1-safe primes, A066179 are 2-safe primes.

Examples

			p = 11: (11 + 1 - 2^i) / 2^i is prime for i = 1..2, thus a(3) = 2.
p = 47: (47 + 1 - 2^i) / 2^i is prime for i = 1..4, thus a(5) = 4.
		

Crossrefs

Programs

  • PARI
    isp(k) = (denominator(k) == 1) && isprime(k);
    f(p) = my(i=1); while (isp((p+1-2^i)/2^i), i++); i-1;
    apply(f, select(x->isp((x-1)/2), primes(1000))) \\ Michel Marcus, May 28 2024

A005384 Sophie Germain primes p: 2p+1 is also prime.

Original entry on oeis.org

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559
Offset: 1

Views

Author

Keywords

Comments

Then 2p+1 is called a safe prime: see A005385.
Primes p such that the equation phi(x) = 2p has solutions, where phi is the totient function. See A087634 for another such collection of primes. - T. D. Noe, Oct 24 2003
Subsequence of A117360. - Reinhard Zumkeller, Mar 10 2006
Let q = 2n+1. For these n (and q), the difference of two cyclotomic polynomials can be written as a cyclotomic polynomial in x^2: Phi(q,x) - Phi(2q,x) = 2x Phi(n,x^2). - T. D. Noe, Jan 04 2008
A Sophie Germain prime p is 2, 3 or of the form 6k-1, k >= 1, i.e., p = 5 (mod 6). A prime p of the form 6k+1, k >= 1, i.e., p = 1 (mod 6), cannot be a Sophie Germain prime since 2p+1 is divisible by 3. - Daniel Forgues, Jul 31 2009
Also solutions to the equation: floor(4/A000005(2*n^2+n)) = 1. - Enrique Pérez Herrero, May 03 2012
In the spirit of the conjecture related to A217788, we conjecture that for any integers n >= m > 0 there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) is prime. - Zhi-Wei Sun, Mar 26 2013
If k is the product of a Sophie Germain prime p and its corresponding safe prime 2p+1, then a(n) = (k-phi(k))/3, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
Giovanni Resta found the first Sophie Germain prime which is also a Brazilian number (A125134), 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73. - _Bernard Schott, Mar 07 2019
For all Sophie Germain primes p >= 5, 2*p + 1 = min(A, B) where A is the smallest prime factor of 2^p - 1 and B the smallest prime factor of (2^p + 1) / 3. - Alain Rocchelli, Feb 01 2023
Consider a pair of numbers (p, 2*p+1), with p >= 3. Then p is a Sophie Germain prime iff (p-1)!^2 + 6*p == 1 (mod p*(2*p+1)). - Davide Rotondo, May 02 2024

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 76, 227-230.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.

Crossrefs

Cf. also A000355, A156541, A156542, A156592, A161896, A156660, A156874, A092816, A023212, A007528 (primes of the form 6k-1).
For primes p that remains prime through k iterations of the function f(x) = 2x + 1: this sequence (k=1), A007700 (k=2), A023272 (k=3), A023302 (k=4), A023330 (k=5), A278932 (k=6), A138025 (k=7), A138030 (k=8).

Programs

  • GAP
    Filtered([1..1600],p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019
    
  • Magma
    [ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009
    
  • Maple
    A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1) then A:=A union {ithprime(n)} fi od: A:=A; # Emeric Deutsch, Dec 09 2004
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[2#+1]&]
    lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *)
  • PARI
    select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)).
    
  • PARI
    forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
    
  • PARI
    is_A005384=(p->isprime(2*p+1)&&isprime(p));
      {A005384_vec(N=100,p=1)=vector(N,i,until(isprime(2*p+1),p=nextprime(p+1));p)} \\ M. F. Hasler, Mar 03 2020
    
  • Python
    from sympy import isprime, nextprime
    def ok(p): return isprime(2*p+1)
    def aupto(limit): # only test primes
      alst, p = [], 2
      while p <= limit:
        if ok(p): alst.append(p)
        p = nextprime(p)
      return alst
    print(aupto(1559)) # Michael S. Branicky, Feb 03 2021

Formula

a(n) mod 10 <> 7. - Reinhard Zumkeller, Feb 12 2009
A156660(a(n)) = 1; A156874 gives numbers of Sophie Germain primes <= n. - Reinhard Zumkeller, Feb 18 2009
tau(4*a(n) + 2) = tau(4*a(n)) - 2, for n > 1. - Arkadiusz Wesolowski, Aug 25 2012
eulerphi(4*a(n) + 2) = eulerphi(4*a(n)) + 2, for n > 1. - Arkadiusz Wesolowski, Aug 26 2012
A005097 INTERSECT A000040. - R. J. Mathar, Mar 23 2017
Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024

A005383 Primes p such that (p+1)/2 is prime.

Original entry on oeis.org

3, 5, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253
Offset: 1

Views

Author

Keywords

Comments

Also, n such that sigma(n)/2 is prime. - Joseph L. Pe, Dec 10 2001; confirmed by Vladeta Jovovic, Dec 12 2002
Primes that are followed by twice a prime, i.e., are followed by a semiprime. (For primes followed by two semiprimes, see A036570.) - Zak Seidov, Aug 03 2013, Dec 31 2015
If A005382(n) is in A168421 then a(n) is a twin prime with a Ramanujan prime, A104272(k) = a(n) - 2. - John W. Nicholson, Jan 07 2016
Starting with 13 all terms are congruent to 1 mod 12. - Zak Seidov, Feb 16 2017
Numbers n such that both n and n+12 are terms are 61, 661, 1201, 4261, 5101, 6121, 6361 (all congruent to 1 mod 60). - Zak Seidov, Mar 16 2017
Primes p for which there exists a prime q < p such that 2q == 1 (mod p). Proof: q = (p + 1)/2. - David James Sycamore, Nov 10 2018
Prime numbers n such that phi(sigma(2n)) = phi(2n), excluding n=3 and n=5; as well as phi(sigma(3n)) = phi(3n), excluding n=3 only. - Richard R. Forberg, Dec 22 2020

Examples

			Both 3 and (3+1)/2 = 2 are primes, both 5 and (5+1)/2 = 3 are primes. - _Zak Seidov_, Nov 19 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A subsequence of A000040 which has A036570 as subsequence.

Programs

  • Haskell
    a005383 n = a005383_list !! (n-1)
    a005383_list = [p | p <- a065091_list, a010051 ((p + 1) `div` 2) == 1]
    -- Reinhard Zumkeller, Nov 06 2012
    
  • MATLAB
    LIMIT = 8000 % Find all members of A005383 less than LIMIT A = primes(LIMIT); n = length(A); %n is number of primes less than LIMIT B = 2*A - 1; C = ones(n, 1)*A; %C is an n X n matrix, with C(i, j) = j-th prime D = B'*ones(1, n); %D is an n X n matrix, with D(i, j) = (i-th prime)*2 - 1 [i, j] = find(C == D); A(j)
    
  • Magma
    [n: n in [1..3300] | IsPrime(n) and IsPrime((n+1) div 2) ]; // Vincenzo Librandi, Sep 25 2012
    
  • Maple
    for n to 300 do
      X := ithprime(n);
    Y := ithprime(n+1);
    Z := 1/2 mod Y;
      if isprime(Z) then print(Y);
    end if:
    end do:
    # David James Sycamore, Nov 11 2018
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(# + 1)/2] &] (* Zak Seidov, Nov 19 2012 *)
  • PARI
    A005383_list(n) = select(m->isprime(m\2+1),primes(n)[2..n]) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Python
    from sympy import isprime
    [n for n in range(3, 5000) if isprime(n) and isprime((n + 1)//2)]
    # Indranil Ghosh, Mar 17 2017
    
  • Sage
    [n for n in prime_range(3, 1000) if is_prime((n + 1) // 2)]
    # F. Chapoton, Dec 17 2019

Formula

a(n) = A129521(n)/A005382(n). - Reinhard Zumkeller, Apr 19 2007
A000035(a(n))*A010051(a(n))*A010051((a(n)+1)/2) = 1. - Reinhard Zumkeller, Nov 06 2012
a(n) = 2*A005382(n) - 1. - Zak Seidov, Nov 19 2012
a(n) = A005382(n) + phi(A005382(n)) = A005382(n) + A000010(A005382(n)). - Torlach Rush, Mar 10 2014

Extensions

More terms from David Wasserman, Jan 18 2002
Name changed by Jianing Song, Nov 27 2021

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)
Previous Showing 11-20 of 250 results. Next