A062105
Square array read by antidiagonals: number of ways a pawn-like piece (with the initial 2-step move forbidden and starting from any square on the back rank) can end at various squares on an infinite chessboard.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 3, 8, 13, 1, 3, 9, 22, 35, 1, 3, 9, 26, 61, 96, 1, 3, 9, 27, 75, 171, 267, 1, 3, 9, 27, 80, 216, 483, 750, 1, 3, 9, 27, 81, 236, 623, 1373, 2123, 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046, 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303, 1, 3, 9, 27
Offset: 0
Array begins:
1 1 1 1 1 1 1 1 1 1 1
2 3 3 3 3 3 3 3 3 3 3
5 8 9 9 9 9 9 9 9 9 ...
13 22 26 27 27 27 27 27 27 ...
35 61 75 80 81 81 81 ...
96 171 216 236 242 243 ...
267 483 623 694 721 ...
750 1373 1800 2038 ...
2123 3923 5211 ...
6046 11257 ...
17303 ...
...
Formatted as a triangle:
1,
1, 2,
1, 3, 5,
1, 3, 8, 13,
1, 3, 9, 22, 35,
1, 3, 9, 26, 61, 96,
1, 3, 9, 27, 75, 171, 267,
1, 3, 9, 27, 80, 216, 483, 750,
1, 3, 9, 27, 81, 236, 623, 1373, 2123,
1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046,
1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303,
...
-
[seq(CPTVSeq(j),j=0..91)]; CPTVSeq := n -> ChessPawnTriangleV( (2+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) );
ChessPawnTriangleV := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; RETURN(ChessPawnTriangleV(r-1,c-1)+ChessPawnTriangleV(r-1,c)+ChessPawnTriangleV(r-1,c+1)); end;
M:=12; T:=Array(0..M,0..M,0);
T[0,0]:=1; T[1,1]:=1;
for i from 1 to M do T[i,0]:=0; od:
for n from 2 to M do for k from 1 to n do
T[n,k]:= T[n,k-1]+T[n-1,k-1]+T[n-2,k-1];
od: od;
rh:=n->[seq(T[n,k],k=0..n)];
for n from 0 to M do lprint(rh(n)); od: # N. J. A. Sloane, Apr 11 2020
-
T[n_, k_] := T[n, k] = If[n < 1 || k < 1, 0, If[n == 1, 1, T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2016, adapted from PARI *)
-
T(n,k)=if(n<1 || k<1,0,if(n==1,1,T(n-1,k-1)+T(n-1,k)+T(n-1,k+1)))
A107230
A number triangle of inverse Chebyshev transforms.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 6, 12, 12, 4, 1, 10, 30, 30, 20, 5, 1, 20, 60, 90, 60, 30, 6, 1, 35, 140, 210, 210, 105, 42, 7, 1, 70, 280, 560, 560, 420, 168, 56, 8, 1, 126, 630, 1260, 1680, 1260, 756, 252, 72, 9, 1, 252, 1260, 3150, 4200, 4200, 2520, 1260, 360, 90, 10, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
6, 12, 12, 4, 1;
10, 30, 30, 20, 5, 1;
-
[[Binomial(n, k)*Binomial(n-k, Floor((n-k)/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 11 2019
-
T:=proc(n,k) options operator, arrow: binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 11 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Oct 07 2007
-
Table[Binomial[n, k]*Binomial[n-k, Floor[(n-k)/2]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2019 *)
-
T(n, k) = binomial(n, k)*binomial(n-k, (n-k)\2); \\ Michel Marcus, Feb 10 2019
-
[[binomial(n, k)*binomial(n-k, floor((n-k)/2)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 11 2019
A185100
Dihedral unlabeled Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n unlabeled points equally spaced on a circle, up to rotations and reflections of the circle.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 11, 16, 36, 65, 150, 312, 756, 1743, 4353, 10732, 27489, 70379, 183866, 481952, 1277784, 3402661, 9126689, 24584870, 66567924, 180939737, 493801694, 1352203202, 3715137460, 10237545525, 28291018283, 78384998904, 217715672036, 606103034821, 1691020991782, 4727601528674, 13242641322252, 37162431389051, 104469244613429
Offset: 0
-
a1006[0] = 1; a1006[n_Integer] := a1006[n] = a1006[n - 1] + Sum[a1006[k]* a1006[n - 2 - k], {k, 0, n - 2}];
a142150[n_] := n*(1 + (-1)^n)/4;
a2426[n_] := Coefficient[(1 + x + x^2)^n, x, n];
a175954[0] = 1; a175954[n_] := (1/n)*(a1006[n] + a142150[n]*a1006[n/2 - 1] + Sum[EulerPhi[n/d]*a2426[d], {d, Most @Divisors[n]}]);
a5773[0] = 1; a5773[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
a[0] = 1;
a[n_?OddQ] := With[{m = (n-1)/2}, (1/2)*(a175954[2*m + 1] + a5773[m + 1])];
a[n_?EvenQ] := With[{m = n/2}, (1/4)*(2*a175954[2*m] + a5773[m] + a5773[m + 1] + a1006[m - 1])];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
A264868
Number of rooted tandem duplication trees on n gene segments.
Original entry on oeis.org
1, 1, 2, 6, 22, 92, 420, 2042, 10404, 54954, 298648, 1660714, 9410772, 54174212, 316038060, 1864781388, 11111804604, 66782160002, 404392312896, 2465100947836, 15116060536540, 93184874448186, 577198134479356, 3590697904513792, 22425154536754776
Offset: 1
Form _Joerg Arndt_, Jan 26 2024: (Start)
The a(5) = 22 words as described in the comment are (dots denote zeros, leading zeros omitted):
1: [ . . . ]
2: [ . . 1 ]
3: [ . . 2 ]
4: [ . . 3 ]
5: [ . 1 . ]
6: [ . 1 1 ]
7: [ . 1 2 ]
8: [ . 1 3 ]
9: [ . 2 1 ]
10: [ . 2 2 ]
11: [ . 2 3 ]
12: [ 1 . . ]
13: [ 1 . 1 ]
14: [ 1 . 2 ]
15: [ 1 . 3 ]
16: [ 1 1 . ]
17: [ 1 1 1 ]
18: [ 1 1 2 ]
19: [ 1 1 3 ]
20: [ 1 2 1 ]
21: [ 1 2 2 ]
22: [ 1 2 3 ]
(End)
- Mathematics of Evolution and Phylogeny, O. Gascuel (ed.), Oxford University Press, 2005
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, The combinatorics of tandem duplication trees, Systematic Biology 52, (2003), 110-118.
- J. Yang and L. Zhang, Letter. On Counting Tandem Duplication Trees, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
-
a:= proc(n) option remember;
if n = 1 then 1 elif n = 2 then 1 else add((-1)^(k+1)*
binomial(n+1-2*k, k)*a(n-k), k = 1..floor((n+1)/3))
end if;
end proc:
seq(a(n), n = 1..24);
-
a[n_] := a[n] = If[n == 1, 1, If[n == 2, 1, Sum[(-1)^(k+1) Binomial[n+1-2k, k] a[n-k], {k, 1, Floor[(n+1)/3]}]]]; Array[a, 25] (* Jean-François Alcover, May 29 2019 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def a(n):
return 1 if n<3 else sum([(-1)**(k + 1)*binomial(n + 1 - 2*k, k)*a(n - k) for k in range(1, (n + 1)//3 + 1)])
print([a(n) for n in range(1, 26)]) # Indranil Ghosh, Aug 30 2017
A026135
Number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120.
Original entry on oeis.org
1, 2, 5, 14, 39, 110, 312, 890, 2550, 7334, 21161, 61226, 177575, 516114, 1502867, 4383462, 12804429, 37452870, 109682319, 321563658, 943701141, 2772060618, 8149661730, 23978203662, 70600640796, 208014215066, 613266903927
Offset: 0
-
CoefficientList[Series[((x - 1)^2*((1 + x)/(1 - 3 x))^(1/2) + x^2 - 1)/(2*x^2), {x,0,50}], x] (* G. C. Greubel, May 22 2017 *)
-
x='x+O('x^50); Vec(((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2)) \\ G. C. Greubel, May 22 2017
A054392
Number of permutations with certain forbidden subsequences.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 131, 418, 1352, 4410, 14463, 47605, 157084, 519255, 1718653, 5693903, 18877509, 62620857, 207816230, 689899944, 2290913666, 7608939443, 25276349558, 83977959853, 279039638062, 927272169336, 3081641953082
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 418*x^7 + 1352*x^8 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
- Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
Interpolates between Motzkin numbers (
A001006) and Catalan numbers (
A000108).
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (2 -10*x +13*x^2 -5*x^3 +x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2-14*x^3) )); // G. C. Greubel, Feb 14 2020
-
m:=30; S:=series((2-10*x+13*x^2-5*x^3+x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2 -14*x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 14 2020
-
a[0] = 1; a[n_]:= Module[{M}, M = Table[If[jJean-François Alcover, Aug 16 2018, after A054391 *)
a[n_]:= a[n]= If[n<2, 1, If[n==2, 2, If[3<=n<=4, 9*n-22, ((8*n-19)*a[n-1] - (20*n-49)*a[n-2] +(11*n-1)*a[n-3] +(19*n-116)*a[n-4] -21*(n-5)*a[n-5])/(n-2) ]]]; Table[a[n], {n,0,30}] (* G. C. Greubel, Feb 14 2020 *)
-
{a(n) = if( n<1, n==0, polcoeff( subst( x * (1 - x) / (1 - 2*x + x^2 - x^3), x, serreverse( x / (1 + x + x^2) + x * O(x^n))), n))}; /* Michael Somos, Aug 06 2014 */
-
def A054392_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (2-10*x+13*x^2-5*x^3+x^2*sqrt(1-2*x-3*x^2))/(2-12*x+22*x^2-14*x^3) ).list()
A054392_list(30) # G. C. Greubel, Feb 14 2020
A066822
The fourth column of A038622, triangular array that counts rooted polyominoes.
Original entry on oeis.org
1, 5, 20, 71, 238, 770, 2436, 7590, 23397, 71566, 217646, 659022, 1988805, 5986176, 17980968, 53922096, 161492571, 483149385, 1444245936, 4314214443, 12880107548, 38436170366, 114657076900, 341926185770, 1019435748435, 3038815305981, 9056974493700
Offset: 0
-
a066822 = flip a038622 3 . (+ 3) -- Reinhard Zumkeller, Feb 26 2013
-
a := n -> simplify(GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2)):
seq(a(n), n=0..20); # Peter Luschny, May 12 2016
-
Table[GegenbauerC[n,-n-3,-1/2]+GegenbauerC[n-1,-n-3,-1/2],{n,0,40}] (* Harvey P. Dale, Feb 20 2017 *)
-
s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
A081113
Number of paths of length n-1 a king can take from one side of an n X n chessboard to the opposite side.
Original entry on oeis.org
1, 4, 17, 68, 259, 950, 3387, 11814, 40503, 136946, 457795, 1515926, 4979777, 16246924, 52694573, 170028792, 546148863, 1747255194, 5569898331, 17698806798, 56076828573, 177208108824, 558658899825, 1757365514652
Offset: 1
For n=2 the 4 paths are (0,0)->(0,1); (0,0)->(1,1); (1,0)->(0,1); (1,0)->(1,1).
-
A026300 := proc(n,k) add( binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2)) ; end proc:
A081113 := proc(n) add(k*(n-k+1)*A026300(n-1,k-1),k=1..n) ; end proc:
seq(A081113(n),n=1..20) ;
# R. J. Mathar, Jun 09 2010
-
t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}] (* from A026300 *); f[n_] := Sum[ k(n - k + 1)t[n - 1, k - 1], {k, n}]; Array[f, 24]
A115990
Riordan array (1/sqrt(1-2*x-3*x^2), (1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10
Offset: 0
Triangle begins
1;
1, 1;
3, 2, 1;
7, 5, 3, 1;
19, 13, 8, 4, 1;
51, 35, 22, 12, 5, 1;
141, 96, 61, 35, 17, 6, 1;
-
Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
-
[[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
-
A115990 := proc(n,k)
add(binomial(n-k,j-k)*binomial(j,n-j),j=0..n) ;
end proc:
seq(seq(A115990(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
-
Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
-
{T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
-
[[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
A158793
Triangle read by rows: product of A130595 and A092392 considered as infinite lower triangular arrays.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 19, 9, 5, 1, 1, 51, 26, 11, 6, 1, 1, 141, 70, 34, 13, 7, 1, 1, 393, 197, 92, 43, 15, 8, 1, 1, 1107, 553, 265, 117, 53, 17, 9, 1, 1, 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1, 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1
Offset: 0
First rows of the triangle:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
19, 9, 5, 1, 1;
51, 26, 11, 6, 1, 1;
141, 70, 34, 13, 7, 1, 1;
393, 197, 92, 43, 15, 8, 1, 1;
1107, 553, 265, 117, 53, 17, 9, 1, 1;
3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1;
8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
-
A158793 := proc (n, k)
add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n);
end proc:
seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)
Comments