cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 117 results. Next

A124258 Triangle whose rows are sequences of increasing and decreasing squares: 1; 1,4,1; 1,4,9,4,1; ...

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 9, 4, 1, 1, 4, 9, 16, 9, 4, 1, 1, 4, 9, 16, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 64, 81, 64, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16
Offset: 1

Views

Author

Jonathan Vos Post, Dec 16 2006

Keywords

Comments

The triangle A003983 with individual entries squared and each 2nd row skipped.
Analogous to A004737. - Peter Bala, Sep 25 2007
T(n,k) = min(n,k)^2. The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 13 2013

Examples

			Triangle starts
  1;
  1, 4, 1;
  1, 4, 9, 4, 1:
  1, 4, 9, 16, 9, 4, 1:
From _Boris Putievskiy_, Jan 13 2013: (Start)
The start of the sequence as table:
  1...1...1...1...1...1...
  1...4...4...4...4...4...
  1...4...9...9...9...9...
  1...4...9..16..16..16...
  1...4...9..16..25..25...
  1...4...9..16..25..36...
  ...
The start of the sequence as triangle array read by rows:
  1;
  1, 4, 1;
  1, 4, 9,  4,  1;
  1, 4, 9, 16,  9,  4,  1;
  1, 4, 9, 16, 25, 16,  9,  4, 1;
  1, 4, 9, 16, 25, 36, 25, 16, 9, 4, 1;
  ...
Row number k contains 2*k-1 numbers 1,4,...,(k-1)^2,k^2,(k-1)^2,...,4,1. (End)
		

Crossrefs

Programs

  • Maple
    A003983 := proc(n,k) min(n,k) ; end: A124258 := proc(n,k) A003983(n,k)^2 ; end: for d from 1 to 20 by 2 do for c from 1 to d do printf("%d, ",A124258(d+1-c,c)) ; od: od: # R. J. Mathar, Sep 21 2007
    # second Maple program:
    T:= n-> i^2$i=1..n, (n-i)^2$i=1..n-1:
    seq(T(n), n=1..10);  # Alois P. Heinz, Feb 15 2022
  • Mathematica
    Flatten[Table[Join[Range[n]^2,Range[n-1,1,-1]^2],{n,10}]] (* Harvey P. Dale, Jun 14 2015 *)

Formula

O.g.f.: (1+qx)^2/((1-x)(1-qx)^2(1-q^2x)) = 1 + x(1 + 4q + q^2) + x^2(1 + 4q + 9q^2 + 4q^3 + q^4) + ... . - Peter Bala, Sep 25 2007
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = (A004737(n))^2.
a(n) = (floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1)^2. (End)

Extensions

More terms from R. J. Mathar, Sep 21 2007
Edited by N. J. A. Sloane, Jun 30 at the suggestion of R. J. Mathar

A322611 Numbers that are sums (of a nonempty sequence) of consecutive centered square numbers.

Original entry on oeis.org

1, 5, 6, 13, 18, 19, 25, 38, 41, 43, 44, 61, 66, 79, 84, 85, 102, 113, 127, 140, 145, 146, 181, 187, 198, 212, 221, 225, 230, 231, 258, 259, 265, 300, 313, 325, 326, 338, 343, 344, 365, 402, 404, 421, 439, 445, 470, 481, 483, 486, 488, 489, 524, 545, 547, 578, 585, 613, 626, 651, 660
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    anmax = 1000; nmax = Floor[Sqrt[anmax/2]] + 1; Select[Union[Flatten[Table[Sum[k^2 + (k + 1)^2, {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)

A061804 a(n) = 2*n*(2*n^2 + 1).

Original entry on oeis.org

0, 6, 36, 114, 264, 510, 876, 1386, 2064, 2934, 4020, 5346, 6936, 8814, 11004, 13530, 16416, 19686, 23364, 27474, 32040, 37086, 42636, 48714, 55344, 62550, 70356, 78786, 87864, 97614, 108060, 119226, 131136, 143814, 157284, 171570, 186696, 202686, 219564
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

Sum of n-th row of triangle of even numbers: (2, 4), (6, 8, 10, 12), (14, 16, 18, 20, 22, 24), (26, 28, 30, 32, 34, 36, 38, 40), ..., where n-th row contains 2n terms.
Also, integer values of n^3/2 + n. - Arkadiusz Wesolowski, Jul 20 2012

Examples

			a(3) = 114 = 14 + 16 + 18 + 20 + 22 + 24.
		

Crossrefs

Programs

Formula

a(n) = 6*A005900(n).
G.f.: 6*x*(1 + x)^2/(1 - x)^4. - Colin Barker, Apr 20 2012
a(n) = A002061(A002061(n+1)) - A002061(A002061(n)). - Daniel Poveda Parrilla, Jun 10 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Alford Arnold, May 29 2001
Better description from Dean Hickerson, Jun 05 2001

A142985 a(1) = 1, a(2) = 6, a(n+2) = 6*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 6, 42, 324, 2784, 26424, 275472, 3132576, 38629440, 513708480, 7331489280, 111798455040, 1814503057920, 31234337164800, 568451665152000, 10906950910464000, 220060558384128000, 4657890328906752000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 3 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142985 n = a142985_list !! (n-1)
    a142985_list = 1 : 6 : zipWith (+)
                           (map (* 6) $ tail a142985_list)
                           (zipWith (*) (drop 2 a002378_list) a142985_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (2*n^3+n)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==6,a[n]==6a[n-1]+(n-1)n*a[n-2]},a,{n,20}] (* Harvey P. Dale, Sep 20 2013 *)

Formula

a(n) = n!*p(n+1)*Sum {k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (2*n^3 + n)/3 = A005900(n).
Recurrence: a(1) = 1, a(2) = 6, a(n+2) = 6*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n):= n!*p(n+1) satisfies the same recurrence with b(1) = 6, b(2) = 38. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(6 + 1*2/(6 + 2*3/(6 + 3*4/(6 + ... + n*(n - 1)/6)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k = 1..oo} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(6 + 1*2/(6 + 2*3/(6 + 3*4/(6 + ... + n*(n - 1)/(6 + ...))))) = 6*log(2) - 4, where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

A166345 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+2*x+x^2)/(1-x)^4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 18, 42, 18, 1, 1, 41, 198, 198, 41, 1, 1, 88, 799, 1584, 799, 88, 1, 1, 183, 2925, 10331, 10331, 2925, 183, 1, 1, 374, 10056, 58874, 103310, 58874, 10056, 374, 1, 1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1
Offset: 1

Views

Author

Roger L. Bagula, Oct 12 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   2,     1;
  1,   7,     7,      1;
  1,  18,    42,     18,      1;
  1,  41,   198,    198,     41,      1;
  1,  88,   799,   1584,    799,     88,      1;
  1, 183,  2925,  10331,  10331,   2925,    183,     1;
  1, 374, 10056,  58874, 103310,  58874,  10056,   374,   1;
  1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1;
		

References

  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, 1]:= x/(1-x)^2;
    p[x_, 2]:= x*(1+x)/(1-x)^3;
    p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
    p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
    Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
    (* Second program *)
    b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
    t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
    T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
    Table[T[n,k,-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
  • Sage
    def b(n,k,m):
        if (n<2): return 1
        elif (k==0): return 0
        else: return k^(n-1)*((m+3)*k^2 - m)/3
    @CachedFunction
    def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
    def A166345(n,k): return 1 if (k==1) else t(n-1,k,-1) - t(n-1,k-1,-1)
    flatten([[A166345(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022

Formula

T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+2*x+x^2)/(1-x)^4.
From G. C. Greubel, Mar 11 2022: (Start)
T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A005900(k), b(n, 0) = 1, and b(1, k) = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 11 2022

A208904 Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.

Original entry on oeis.org

1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Riordan array ((1+x)/(1-x)^2, x(1+x)/(1-x)^2) (follows from Kruchinin formula). - Ralf Stephan, Jan 02 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A099375 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Examples

			First five rows:
1
3...1
5...6....1
7...19...9....1
9...44...42...12...1
First five polynomials v(n,x):
1
3 + x
5 + 6x + x^2
7 + 19x + 9x^2 + x^3
9 + 44x + 42x^2 + 12x^3 + x^4
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/1        \/1        \/1        \      /1            \
|3 1      ||0 1      ||0 1      |      |3  1         |
|5 3 1    ||0 3 1    ||0 0 1    |... = |5  6  1      |
|7 5 3 1  ||0 5 3 1  ||0 0 3 1  |      |7 19  9  1   |
|9 7 5 3 1||0 7 5 3 1||0 0 5 3 1|      |9 44 42 12 1 |
|...      ||...      ||...      |      |...
(End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208660 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208904 *)

Formula

u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Vladimir Kruchinin, Mar 11 2013: (Start)
T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i))
((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n).
T(n,2)=A005900(n).
T(2*n-1,n) / n = A003169(n).
T(2*n,n) = A156894(n), n>1.
sum(k=1..n, T(n,k)) = A003946(n).
sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n).
n*sum(k=1..n, T(n,k)/k) = A058481(n). (End)
Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - Peter Bala, Jul 21 2014

A213752 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 3, 19, 14, 5, 44, 37, 22, 7, 85, 76, 55, 30, 9, 146, 135, 108, 73, 38, 11, 231, 218, 185, 140, 91, 46, 13, 344, 329, 290, 235, 172, 109, 54, 15, 489, 472, 427, 362, 285, 204, 127, 62, 17, 670, 651, 600, 525, 434, 335, 236, 145, 70, 19, 891, 870, 813
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2012

Keywords

Comments

Principal diagonal: A100157
Antidiagonal sums: A071238
row 1, (1,3,5,7,9,...)**(1,3,5,7,9,...): A005900
row 2, (1,3,5,7,9,...)**(3,5,7,9,11,...): A143941
row 3, (1,3,5,7,9,...)**(5,7,9,11,13,...): (2*k^3 + 12*k^2 + k)/6
row 4, (1,3,5,7,9,...)**(7,9,11,13,15,,...): (2*k^3 + 18*k^2 + k)/6
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...6....19...44....85....146
3...14...37...76....135...218
5...22...55...108...185...290
7...30...73...140...235...362
9...38...91...172...285...434
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := 2 n - 1; c[n_] := 2 n - 1;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213752 *)
    Table[t[n, n], {n, 1, 40}] (* A100157 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A071238 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = 2*n - 1 + 2*x - (2*n - 3)*x^2 and g(x) = (1 - x )^4.

A279512 Sierpinski octahedron numbers a(n) = 2*6^n + 3*2^n + 1.

Original entry on oeis.org

6, 19, 85, 457, 2641, 15649, 93505, 560257, 3360001, 20156929, 120935425, 725600257, 4353576961, 26121412609, 156728377345, 940370067457, 5642220011521, 33853319282689, 203119914123265, 1218719481593857, 7312316883271681, 43873901287047169, 263243407697117185
Offset: 0

Views

Author

Steven Beard, Dec 14 2016

Keywords

Comments

Sierpinski recursion applied to octahedron. Cf. A279511 for square pyramids.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -20, 12}, {6, 19, 85}, 50] (* or *) Table[2*6^n + 3*2^n + 1, {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
  • PARI
    Vec((6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Dec 15 2016
    
  • Python
    def a(n): return 2*6**n + 3*2**n + 1
    print([a(n) for n in range(23)]) # Michael S. Branicky, Jun 19 2021

Formula

a(n) = 3*2^n + 2^(n+1)*3^n + 1.
a(n) = 6a(n-1) - 6(2^n+1) + 1.
a(n) = 6a(n-1) - (3*2^(n+1) + 5).
a(n) = 2*6^n + 3*2^n + 1.
From Colin Barker, Dec 15 2016: (Start)
a(n) = 9*a(n-1) - 20*a(n-2) + 12*a(n-3) for n>2.
G.f.: (6 - 35*x + 34*x^2) / ((1 - x)*(1 - 2*x)*(1 - 6*x)).
(End)

Extensions

Incorrect terms corrected by Colin Barker, Dec 15 2016

A057884 A square array based on tetrahedral numbers (A000292) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 4, 1, 1, 0, 4, 2, 1, 10, 4, 5, 3, 1, 0, 10, 8, 7, 4, 1, 20, 10, 14, 13, 10, 5, 1, 0, 20, 20, 22, 20, 14, 6, 1, 35, 20, 30, 34, 35, 30, 19, 7, 1, 0, 35, 40, 50, 56, 55, 44, 25, 8, 1, 56, 35, 55, 70, 84, 91, 85, 63, 32, 9, 1, 0, 56, 70, 95, 120, 140, 146, 129, 88, 40, 10, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Examples

			Rows are (1,0,4,0,10,0,20,...), (1,1,4,4,10,10,20,...), (1,2,5,8,14,20,30,...), (1,3,7,13,22,34,50,...), (1,4,10,20,35,56,84,...) etc.
		

Crossrefs

Rows are A000292 with zeros, A058187 (A000292 with terms duplicated), A006918, A002623, A000292, A000330, A005900, A001845, A008412.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(4, 1)=4, T(0, 2n)=T(4, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^4.

A130713 a(0)=a(2)=1, a(1)=2, a(n)=0 for n > 2.

Original entry on oeis.org

1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Curtz and Tanya Khovanova, Jul 01 2007

Keywords

Comments

Self-convolution of A019590. Up to a sign the convolutional inverse of the natural numbers sequence. - Tanya Khovanova, Jul 14 2007
Iterated partial sums give the chain A130713 -> A113311 -> A008574 -> A001844 -> A005900 -> A006325 -> A033455 -> A259181, up to index. The k-th term of the n-th partial sums is (n^2-7n+14 + 4k(k+n-4))(k+n-4)!/(k-1)!/(n-1)!, for k > 3-n. Iterating partial sums in reverse (n-th differences with n zeros prepended) gives row (n+3) of A182533, modulo signs and trailing zeros. - Travis Scott, Feb 19 2023

Programs

Formula

G.f.: 1 + 2*x + x^2.
a(n) = binomial(2n, n^2). - Wesley Ivan Hurt, Mar 08 2014
Previous Showing 61-70 of 117 results. Next