cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 137 results. Next

A117671 a(n) = binomial(3*n+1, n+1).

Original entry on oeis.org

1, 6, 35, 210, 1287, 8008, 50388, 319770, 2042975, 13123110, 84672315, 548354040, 3562467300, 23206929840, 151532656696, 991493848554, 6499270398159, 42671977361650, 280576272201225, 1847253511032930, 12176310231149295, 80347448443237920, 530707489338171600
Offset: 0

Views

Author

Zerinvary Lajos, Apr 12 2006

Keywords

Examples

			if n=0 then C(3*0+1,0+1) = C(1,1) = 1.
if n=10 then C(3*10+1,10+1) = C(31,11) = 84672315.
		

Crossrefs

Cf. A025174 (binomial(3n-1,n-1)), A006013.

Programs

  • Haskell
    a117671 n = a258993 (2 * n + 1) n  -- Reinhard Zumkeller, Jun 22 2015
    
  • Maple
    seq(binomial(3*n+1,n+1),n=0..30); # Robert Israel, Oct 10 2017
  • Mathematica
    Table[Binomial[3n+1,n+1],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    vector(30, n, n--; binomial(3*n+1, n+1)) \\ Altug Alkan, Nov 04 2015

Formula

G.f.: (2*(-1+Hypergeometric2F1[-(1/3),1/3,-(1/2),(27*x)/4]))/(3*x). - Harvey P. Dale, Jul 19 2011
G.f.: A(x) = B'(x)/B(x)-B'(x)-1/x, where B(x) = 4/3*sin(1/3*asin(sqrt((27*x)/4)))^2. - Vladimir Kruchinin, Nov 26 2014
a(n) = A258993(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Peter Bala, Nov 04 2015: (Start)
With an extra initial term equal to 1, the o.g.f. equals f(x)/g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1). (End)
a(n) = [x^(2*n)] 1/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017
a(n+1) = 3*(3*n+2)*(3*n+4)*a(n)/(2*(n+2)*(2*n+1)). - Robert Israel, Oct 10 2017
a(n) ~ 3^(3*n+3/2) / (2^(2*n+1) * sqrt(Pi*n)). - Amiram Eldar, Sep 05 2025

A251573 E.g.f.: exp(3*x*G(x)^2) / G(x)^2 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 21, 261, 4833, 120303, 3778029, 143531433, 6404711553, 328447585179, 19037277446949, 1230842669484717, 87829738967634849, 6856701559496841159, 581343578623728854397, 53196439113856500195537, 5225543459274294130169601, 548468830470032135590262067, 61258398893626609968686844597
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 21*x^3/3! + 261*x^4/4! + 4833*x^5/5! +...
such that A(x) = exp(3*x*G(x)^2) / G(x)^2
where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
The e.g.f. satisfies:
A(x) = 1 + x/A(x) + 5*x^2/(2!*A(x)^2) + 54*x^3/(3!*A(x)^3) + 945*x^4/(4!*A(x)^4) + 23328*x^5/(5!*A(x)^5) + 750141*x^6/(6!*A(x)^6) + 29859840*x^7/(7!*A(x)^7) +...+ 3^(n-1)*(n+1)^(n-3)*(n+3) * x^n/(n!*A(x)^n) +...
Note that
A'(x) = exp(3*x*G(x)^2) = 1 + 3*x + 21*x^2/2! + 261*x^3/3! + 4833*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 +...
and so A'(x)/A(x) = G(x)^2.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  3,   21,   261,   4833,  120303,   3778029, ...];
n=2: [1, 2,  8,   60,   744,  13536,  330912,  10232928, ...];
n=3: [1, 3, 15,  123,  1557,  28179,  680427,  20771235, ...];
n=4: [1, 4, 24,  216,  2832,  51552, 1237248,  37404288, ...];
n=5: [1, 5, 35,  345,  4725,  87285, 2094975,  62949825, ...];
n=6: [1, 6, 48,  516,  7416, 139968, 3378528, 101278944, ...];
n=7: [1, 7, 63,  735, 11109, 215271, 5250987, 157613463, ...];
n=8: [1, 8, 80, 1008, 16032, 320064, 7921152, 238878720, ...]; ...
in which the main diagonal begins (see A251583):
[1, 2, 15, 216, 4725, 139968, 5250987, 238878720, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[3^k * n!/k! * Binomial[3*n-k-3, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
    Flatten[{1,1,RecurrenceTable[{27*(n-2)*a[n-2]-3*(3*n-8)*(15-13*n+3*n^2)*a[n-1]+2*(n-3)*(2*n-3)*a[n]==0,a[2]==3,a[3]==21},a,{n,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n)); n!*polcoeff(exp(3*x*G^2)/G^2, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 3^k * n!/k! * binomial(3*n-k-3,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^2.
(2) A'(x) = exp(3*x*G(x)^2).
(3) A(x) = exp( Integral G(x)^2 dx ).
(4) A(x) = exp( Sum_{n>=1} A006013(n-1)*x^n/n ), where A006013(n-1) = binomial(3*n-2,n)/(2*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251583.
(6) A(x) = Sum_{n>=0} A251583(n)*(x/A(x))^n/n! where A251583(n) = 3^(n-1) * (n+1)^(n-3) * (n+3).
(7) [x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3).
a(n) = Sum_{k=0..n} 3^k * n!/k! * binomial(3*n-k-3, n-k) * (k-1)/(n-1) for n>1.
Recurrence (for n>3): 2*(n-3)*(2*n-3)*a(n) = 3*(3*n-8)*(3*n^2 - 13*n + 15)*a(n-1) - 27*(n-2)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 3^(3*n-7/2) * n^(n-2) / (2^(2*n-5/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A118969 a(n) = 2*binomial(5*n+1,n)/(4*n+2).

Original entry on oeis.org

1, 2, 11, 80, 665, 5980, 56637, 556512, 5620485, 57985070, 608462470, 6474009360, 69682358811, 757366074080, 8300675584120, 91634565938880, 1018002755977245, 11372548404732930, 127677890035721025, 1439777493407492640
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
If y = x + 2*x^3 + x^5, the series reversion is x = y - 2*y^3 + 11*y^5 - 80*y^7 + 665*y^9 - ... - R. J. Mathar, Sep 29 2012

Examples

			a(3) = 80 = sum of top row terms in M^n = (35 + 35 + 9 + 1).
		

Crossrefs

Programs

  • Magma
    [2*Binomial(5*n+1,n)/(4*n+2): n in [0..20]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    Table[2*Binomial[5n+1,n]/(4n+2),{n,0,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=2*binomial(5*n+1,n)/(4*n+2); \\ Joerg Arndt, Apr 20 2013

Formula

From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is sum of top row terms in M^n, where M is an infinite square production matrix with the tetrahedral series in each column (A000292), as follows:
1, 1, 0, 0, 0, 0, ...
4, 1, 1, 0, 0, 0, ...
10, 10, 4, 1, 0, 0, ...
20, 20, 10, 4, 1, 0, ...
35, 35, 20, 10, 4, 1, ...
... (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5],[1/2, 3/4, 5/4], 3125*x/256)^2. - Mark van Hoeij, Apr 19 2013
a(n) = 2*binomial(5n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
D-finite with recurrence 8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) - 5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 10 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(x)^2)^2. - Ilya Gutkovskiy, Nov 13 2021

A130565 Member k=6 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 6, 57, 650, 8184, 109668, 1533939, 22137570, 327203085, 4928006512, 75357373305, 1166880131820, 18259838103852, 288308609783760, 4587430875645660, 73484989079268690, 1184104656043939071
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
For the members of the family C(k,n), k=2..9, see A130564.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A006013, A006632, A118971,for k=2,3,4 respectively (but the offset there is 0) and A130564 for k=5.

Crossrefs

Cf. k=5 member A130564. A006013, A006632, A118971,

Programs

  • Mathematica
    Table[Binomial[7n-2,n]/(6n-1),{n,20}] (* Harvey P. Dale, Feb 25 2013 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=6.
G.f.: inverse series of y*(1-y)^6.
a(n) = (6/7)*binomial(7*n,n)/(7*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5]/6, (7^7/6^6)*x)).
E.g.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5, 6]/6, (7^7/6^6)*x)). (End)

A051255 Number of cyclically symmetric transpose complement plane partitions in a 2n X 2n X 2n box.

Original entry on oeis.org

1, 1, 2, 11, 170, 7429, 920460, 323801820, 323674802088, 919856004546820, 7434724817843114428, 170943292930264547814443, 11183057455425265737399150652, 2081853548182272792243789109645876
Offset: 0

Views

Author

Keywords

Comments

Hankel transform of A006013 without initial term is this sequence without initial term. - Michael Somos, May 15 2022

Examples

			For n=0 there is the empty partition by convention so a(0)=1. For n=1 there is a single cyclically symmetric transpose complement plane partition in a 2 X 2 X 2 box so a(1)=1.
G.f. = 1 + x + 2*x^2 + 11*x^3 + 170*x^4 + 7429*x^5 + 920460*x^6 + 323801820*x^7 + ... - _Michael Somos_, May 15 2022
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.15), p. 199 (corrected).

Crossrefs

Programs

  • Maple
    A051255 := proc(n) local i; mul((3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!),i=0..n-1); end;
  • Mathematica
    a[n_] := Product[(3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!), {i, 0, n-1}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 25 2014 *)
  • PARI
    a(n)=prod(i=0,n-1,(3*i+1)*(6*i)!*(2*i)!/((4*i)!*(4*i+1)!)); \\ Joerg Arndt, Feb 25 2014
    
  • PARI
    A051255(n)=prod(i=0,n-1,(3*i+1)*binomial(6*i,2*i)/binomial(4*i+1,2*i)/(2*i+1)) \\ M. F. Hasler, Oct 04 2018

Formula

a(n) ~ exp(1/72) * GAMMA(1/3)^(2/3) * n^(7/72) * 3^(3*n^2 - 3*n/2 + 11/72) / (A^(1/6) * Pi^(1/3) * 2^(4*n^2 - n - 1/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Feb 28 2015
a(n) = Product_{i=0..n-1} (3i+1) C(6i,2i)/(C(4i+1,2i)*(2i+1)), using [Bressoud, Corrections, p. 199: N8]. - M. F. Hasler, Oct 04 2018

Extensions

More terms from Michel ten Voorde
Missing a(0)=1 term added by Michael Somos, Feb 25 2014

A236194 a(n) = binomial(3n+1, n-1).

Original entry on oeis.org

1, 7, 45, 286, 1820, 11628, 74613, 480700, 3108105, 20160075, 131128140, 854992152, 5586853480, 36576848168, 239877544005, 1575580702584, 10363194502115, 68248282427325, 449972009097765, 2969831763694950, 19619725782651120, 129728497393775280, 858478958817125100
Offset: 1

Views

Author

Bruno Berselli, Jan 20 2014

Keywords

Comments

This sequence is related to A006013 by a(n)/n = A006013(n)/2.

Crossrefs

Cf. A006013; A025174: C(3n-1, n-1); A117671: C(3n+1, n+1).
Second column of the triangle A159841.
Third column of the triangle A119301.

Programs

  • Magma
    [Binomial(3*n+1,n-1): n in [1..30]];
    
  • Mathematica
    Table[Binomial[3n+1, n-1], {n, 30}]
  • Maxima
    makelist(binomial(3*n+4,n),n,0,40); /* Emanuele Munarini, Oct 14 2014 */
    
  • PARI
    vector(30, n, binomial(3*n+1, n-1)) \\ Altug Alkan, Nov 04 2015
    
  • SageMath
    [binomial(3*n+1,n-1) for n in range(1,31)] # G. C. Greubel, Nov 09 2022

Formula

G.f.: (sqrt(4-27*x)*cos((2/3)*arcsin((3/2)*sqrt(3*x))) + sqrt(3*x)*sin((2/3)*arcsin((3/2)*sqrt(3*x))) - sqrt(4-27*x))/(3*sqrt(4-27*x)*x^2). - Emanuele Munarini, Oct 14 2014
From Peter Bala, Nov 04 2015: (Start)
With offset 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
a(n) = [x^n] x/(1 - x)^(2*n+3). - Ilya Gutkovskiy, Oct 10 2017
From Karol A. Penson, Mar 02 2024: (Start)
G.f.: ((sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) - 12*i*sqrt(3)*sqrt(x))^(2/3) + (-sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) + 12*i*sqrt(3)*sqrt(x))^(2/3) - 8*sqrt(4 - 27*x))/(24*sqrt(4 - 27*x)*x^2), where i is the imaginary unit, i=sqrt(-1).
G.f.: hypergeometric3F2([5/3,2,7/3],[5/2,3],27*x/4).
G.f. = G satisfies the algebraic equation: 1 + (7*z-1)*G + (27*z-4)*z^2*G^2 + (27*z-4)*z^4*G^3 = 0. (End)
a(n) ~ 3^(3*n+3/2) / (2^(2*n+3) * sqrt(Pi*n)). - Amiram Eldar, Sep 05 2025

A270386 Expansion of (4/(3*x/(1-x))) * sin((1/3)*arcsin(sqrt(27*x/4/(1-x))))^2.

Original entry on oeis.org

1, 2, 9, 46, 256, 1510, 9283, 58848, 381963, 2525916, 16958498, 115288674, 792042589, 5490312864, 38352695246, 269719400974, 1908059370583, 13568804436340, 96942782340802, 695513575242284, 5008808999633736, 36195063931874308, 262372258663337954
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 16 2016

Keywords

Crossrefs

Cf. A006013.

Programs

  • Mathematica
    Table[Sum[(Binomial[n - 1, n - k]*((Binomial[3*k + 1, k + 1])/(2*k + 1))), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 16 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=(sum(binomial(n-1,n-k)*((binomial(3*k+1,k+1))/(2*k+1)),k,0,n));
    
  • PARI
    a(n) = sum(k=0, n, binomial(n-1,n-k)*(binomial(3*k+1,k+1)/(2*k+1))); \\ Michel Marcus, Mar 16 2016
    
  • Sage
    a = lambda n: simplify(2*hypergeometric([5/3, 7/3, 1-n],[5/2, 3],-27/4)) if n>0 else 1
    [a(n) for n in range(23)] # Peter Luschny, Mar 16 2016

Formula

a(n) = Sum_{k=0..n} binomial(n-1,n-k)*(binomial(3*k+1,k+1)/(2*k+1)).
G.f.: g(x/(1-x)) where g(x) is the g.f. of A006013.
a(n) ~ 31^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Mar 16 2016
a(n) = 2*hypergeometric([5/3, 7/3, 1-n], [5/2, 3], -27/4) for n>0. - Peter Luschny, Mar 16 2016
D-finite with recurrence: 2*(n+1)*(2*n+1)*a(n) +(-39*n^2+8*n+5)*a(n-1) +(66*n-37)*(n-2)*a(n-2) -31*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 07 2016

A047000 Array T read by diagonals; T(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no step touches the line y=x/2 except at the endpoints.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 4, 5, 2, 2, 1, 1, 5, 9, 7, 4, 3, 1, 1, 6, 14, 16, 7, 3, 4, 1, 1, 7, 20, 30, 23, 7, 7, 5, 1, 1, 8, 27, 50, 53, 30, 14, 12, 6, 1, 1, 9, 35, 77, 103, 83, 30, 12, 18, 7, 1, 1, 10, 44, 112, 180, 186, 113, 30, 30
Offset: 0

Views

Author

Keywords

Comments

Touches here includes the case where a step touches the line at a midpoint.

Examples

			Diagonals (starting on row #0): {1}; {1,1}; {1,1,1}; {1,2,2,1}; {1,3,2,1,1}; ...
T(2,3) = 5; the 5 allowed paths to (2,3) are UUURR, UURUR, UURRU, URUUR, and URURU.
		

Crossrefs

The sequence T(2n, n)/2 for n=1, 2, 3, ... is A006013.

Programs

  • PARI
    T(h,k)=if(h==0 || k==0,1,T(h-1,k)*(h-1!=2*k)+T(h,k-1)*(h!=2*k-2 && h!=2*k-1)) /* Inefficient. */

Extensions

Definition corrected by Franklin T. Adams-Watters, Mar 10 2011

A092276 Triangle read by rows: T(n,k) is the number of noncrossing trees with root degree equal to k.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 30, 18, 6, 1, 143, 88, 33, 8, 1, 728, 455, 182, 52, 10, 1, 3876, 2448, 1020, 320, 75, 12, 1, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 690690, 444015, 197340, 70840, 21252, 5313, 1078, 168, 18, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 24 2004

Keywords

Comments

With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - Philippe Deléham, Jan 23 2010

Examples

			Triangle begins:
     1;
     2,    1;
     7,    4,    1;
    30,   18,    6,   1;
   143,   88,   33,   8,  1;
   728,  455,  182,  52, 10,  1;
  3876, 2448, 1020, 320, 75, 12, 1;
  ...
Top row of M^3 = (30, 18, 6, 1)
From _Peter Bala_, Nov 25 2024: (Start)
The transposed array as an infinite product of upper triangular arrays:
  /1 2 3 4 5 ... \/1            \/1              \       /1 2 7 30 143 ...\
  |  1 2 3 4 ... ||  1 2 3 4 ...||  1            |       |  1 4 18  88 ...|
  |    1 2 3 ... ||    1 2 3 ...||    1 2 3 4 ...| ... = |    1  6  33 ...|
  |      1 2 ... ||      1 2 ...||      1 2 3 ...|       |       1   8 ...|
  |        1 ... ||        1 ...||        1 2 ...|       |           1 ...|
  |          ... ||          ...||            ...|       |             ...|
Cf. A078812. (End)
		

Crossrefs

Row sums give sequence A001764.
Columns 1..5 are A006013, A006629, A006630, A006631, A233657.

Programs

  • Maple
    T := proc(n,k) if k=n then 1 else 2*k*binomial(3*n-k,n-k)/(3*n-k) fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • PARI
    T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k).
G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764.
T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - Philippe Deléham, Sep 14 2005
With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - Philippe Deléham, Jan 23 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End)
Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - Peter Bala, Apr 30 2024

A036829 a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).

Original entry on oeis.org

0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0

Views

Author

Keywords

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

  • Haskell
    a036829 n = sum $ map
       (\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
    -- Reinhard Zumkeller, May 24 2012
  • Mathematica
    Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)

Formula

G.f.: (g-g^2)/(3*g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Recurrence: 8*(n-1)*(2*n-1)*a(n) = 6*(36*n^2-81*n+49)*a(n-1) - 81*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n-1)/2^(2*n+1). - Vaclav Kotesovec, Dec 29 2012
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(3*k,k)*x^k ). - Seiichi Manyama, Jul 19 2025
G.f.: (g-1)/(3-2*g)^2 where g=1+x*g^3. - Seiichi Manyama, Jul 26 2025
Previous Showing 31-40 of 137 results. Next