cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A077998 Expansion of (1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Let u(k), v(k), w(k) be defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)+w(k), v(k+1)=u(k)+v(k), w(k+1)=u(k); then {u(n)} = 1,1,3,6,14,31,... (A006356 with an extra initial 1), {v(n)} = 0,1,2,5,11,25,... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = this sequence with an extra initial 0. - Benoit Cloitre, Apr 05 2002 [Also u(k)^2+v(k)^2+w(k)^2 = u(2k). - Gary W. Adamson, Dec 23 2003]
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A077998 counts closed walks of length n at the vertex of degree 4. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+2)-sequences with no flatsteps at ground level and whose height is <=2. For example, a(3)=6 counts UDUFD, UFDUD, UFFFD, UFUDD, UUDFD, UUFDD. - David Callan, Dec 09 2004
Number of compositions of n if there are two kinds of part 2. Example: a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1). Row sums of A105477. - Emeric Deutsch, Apr 09 2005
Diagonal sums of A056242. - Paul Barry, Dec 26 2007
Diagonal sums of triangle in A105306. - Philippe Deléham, Nov 16 2008
a(n) appears in the formula for the nonpositive powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^(-n) = a(n)*1 + a(n-1)*rho - C(n)*sigma, n>=0, with C(n)=A006054(n+1). Put a(-1):=0. See the Steinbach reference, and a comment under A052547.
The limit a(n+1)/a(n) for n -> infinity is sigma = rho^2-1, approximately 2.246979603. See a Nov 07 2013 comment on A006054 for the proof, and the preceding comment for rho and sigma and the P. Steinbach reference. - Wolfdieter Lang, Nov 07 2013
From Greg Dresden and Aaron Zhou, Jun 15 2023: (Start)
a(n) is the number of ways to tile a skew double-strip of 3*n cells using all possible "trominos". Here is the skew double-strip corresponding to n=4, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "tromino" tiles, which can be rotated or reflected as needed:
_ _
| | | |
|__|_ ___|___| _________
| | | | | | | | | |
|_|___|, |_|___| , |_|___|_|.
As an example, here is one of the a(4) = 14 ways to tile the skew double-strip of 12 cells:
_ ___ _____ _______
| | | | |
| | |___ | |
| | | | |
|_____|_______|_|___|. (End)

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 70*x^6 + 157*x^7 + 353*x^8 + ... - _Michael Somos_, Dec 12 2023
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Apart from initial term, same as A006356, which is the main entry for this sequence. A106803 is yet another version.

Programs

  • GAP
    a:=[1,1,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 01 2017
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x-x^2+x^3), {x, 0, 40}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{2,1,-1},{1,1,3},40] (* Roman Witula, Aug 07 2012 *)
    a[ n_] := {1, 0, 0} . MatrixPower[{{0, 1, 0}, {0, 0, 1}, {-1, 1, 2}}, n] . {1, 1, 3}; (* Michael Somos, Dec 12 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • SageMath
    ((1-x)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

a(0)=a(1)=1, a(2)=3, a(n+1) = 2*a(n) + a(n-1) - a(n-2) for n>=2. - Philippe Deléham, Sep 07 2006
7*a(n) = (s(2))^2*(1+c(1))^n + (s(4))^2*(1+c(2))^n + (s(1))^2(1+c(4))^n, where c(j) = 2*Cos(2Pi*j/7) and s(j) = 2*Sin(2Pi*j/7) - for the proof of this one and many other relations for the sequences u(k), v(k) and w(k) defined on the top of the comments by Benoit Cloitre - see Witula et al.'s paper. - Roman Witula, Aug 07 2012
a(n) = b(n+2)- b(n+1), first differences of b(n) = A006054(n). - Wolfdieter Lang, Nov 07 2013; corrected by Kai Wang, May 31 2017
a(n) = A096976(-n) for all n in Z. - Michael Somos, Dec 12 2023

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar

A052547 Expansion of (1-x)/(1-x-2*x^2+x^3).

Original entry on oeis.org

1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417, 728, 1341, 2380, 4334, 7753, 14041, 25213, 45542, 81927, 147798, 266110, 479779, 864201, 1557649, 2806272, 5057369, 9112264, 16420730, 29587889, 53317085, 96072133, 173118414, 311945595, 562110290, 1012883066
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Form the graph with matrix A=[0,1,1;1,0,0;1,0,1] (P_3 with a loop at an extremity). Then A052547 counts closed walks of length n at the degree 2 vertex. - Paul Barry, Oct 02 2004
The characteristic polynomial x^3 - x^2 - 2*x + 1 generates a 3 step recursion: a(0)=1,a(1)=0,a(2)=2, for n>2 a(n)=a(n-1)+2*a(n-2)-a(n-3) so we can also prepend the term 1,0 to a(n) and get the same sequence, i.e. start with a(0)=1,a(1)=0,a(2)=1. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 30 2005
The length of the diagonals (including the side) of a regular 7-gon (heptagon) inscribed in a circle of radius r=1 are d_1=2*sin(Pi/7) (the side length), d_2=2*cos(Pi/7)*d_1, and d_3=2*sin(3*Pi/7). The two ratios are rho := R_2 = d_2/d_1 = 2*cos(Pi/7) approximately 1.801937736, and sigma:= R_3 = d_3/d_1 = S(2,rho) = rho^2-1, approximately 2.246979604. See A049310 for Chebyshev S-polynomials. See the Steinbach reference where the basis <1,rho,sigma> has been considered for an extension of the rational field Q, which is there called Q(rho). This rho is the largest zero of S(6,x). For nonnegative powers of rho one has rho^n = C(n)*1 + B(n)*rho + A(n)*sigma, with B(n)=a(n-1), a(-1):=0, a(-2):=1, A(n)=B(n+1)-B(n-1)= A006053(n), and C(n)=B(n-1)=a(n-2), n>=0. For negative powers see A106803 and -A006054. For nonnegative and negative powers of sigma see A006054, A106803 and a(n), -A006053, respectively.
a(n) appears also in the formula for the nonpositive powers of sigma (see the comment above for the definition and the Steinbach basis) as sigma^(-n) = a(n)*1 - A006053(n+1)*rho - a(n-1)*sigma, n>=0. Put a(-1):=0. 1/sigma=sigma-rho, the smallest positive zero of S(6,x) (see A049310 for Chebyshev S-polynomials). - Wolfdieter Lang, Dec 01 2010

Crossrefs

Cf. A096976; second differences of A028495 and first differences of A006053 (up to an offset).

Programs

  • GAP
    a:=[1,0,2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
  • Magma
    I:=[1,0,2]; [n le 3 select I[n] else Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..40]]; // G. C. Greubel, May 08 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Prod(Z, Sequence(Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..40);
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {1, 0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {a(n) = if(n==0,1,if(n==1,0,if(n==2,2,a(n-1)+2*a(n-2)-a(n-3))))};
    for(i=0,40,print1(a(i),",")) \\ Lambert Klasen, Jan 30 2005
    
  • Sage
    ((1-x)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
    

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0)=1, a(1)=0, a(2)=2.
a(n) = Sum(-1/7*_alpha*(-3+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-2*_Z^2-_Z+1)).
a(n) = 5*a(n-2) - 6*a(n-4) + a(n-6). - Floor van Lamoen, Nov 02 2005

Extensions

More terms from James Sellers, Jun 05 2000

A033304 Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).

Original entry on oeis.org

2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450
Offset: 0

Views

Author

Keywords

Comments

From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(7,2)=
(0 0 1)
(0 1 1)
(1 1 1).
Let B={b(n)} be this sequence shifted to the right one place and setting b(0)=3. Then B=(3,2,6,11,26,...) with generating function (3-4*x-x^2)/(1-2*x-x^2+x^3) and b(n)=Trace(A^n). (End)
The following identity hold true (a(n)^2 - a(2n+2))/2 = A094648(n+1) = (-1)^(n+1)*A096975(n+1) - for the proof see Witula et al.'s papers - Roman Witula, Jul 25 2012
We note that the joined sequences (-1)^(n+1)*a(n) and A094648(n) form a two-sided sequence defined either by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(0)=3, x(-1)=-2, x(1)=-1, or by the following trigonometric identities: x(n) = (c(1))^n + (c(2))^n + (c(4))^n = (c(1)c(2))^(-n) + (c(1)c(4))^(-n) + (c(2)c(4))^(-n) = (s(2)/s(1))^n + (s(4)/s(2))^n + (s(1)/s(4))^n, for n in Z, where c(j) := 2*cos(2Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
We have 4*a(n+2) - a(n) = 7*A077998(n+2). - Roman Witula, Aug 13 2012
Two very intriguing identities of trigonometric nature hold: (-1)^n*(a(n)-a(n-1)) = c(1)*c(2)^(-n) + c(2)*c(4)^(-n) + c(4)*c(1)^(-n), and (-1)^(n+1)*(a(n-1)-a(n+1)) = c(1)*c(4)^(-n-1) + c(2)*c(1)^(-n-1) + c(4)*c(2)^(-n-1), where a(-1):=3 and c(j) is defined as above. For the proof see Remark 6 in the first Witula's paper. - Roman Witula, Aug 14 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 20 for the argument 2Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244, Eq. (36).

Crossrefs

Programs

  • Magma
    I:=[2,6,11]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    CoefficientList[Series[(2+2x-3x^2)/(1-2x-x^2+x^3),{x,0,50}], x]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{2, 1, -1}, {2, 6, 11}, 29] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    {a(n)=if(n<0, n=-n; polsym(x^3-x^2-2*x+1,n-1)[n], n+=2; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
    
  • PARI
    x='x+O('x^99); Vec((2+2*x-3*x^2)/(1-2*x-x^2+x^3)) \\ Altug Alkan, Apr 19 2018
    

Formula

a(-1-n) = A096975(n).
a(n) = (1-2*cos(1/7*Pi))^(n+1)+(1+2*cos(2/7*Pi))^(n+1)+(1-2*cos(3/7*Pi))^(n+1). - Vladeta Jovovic, Jun 27 2001
a(n) = trace of (n+1)-th power of the 3 X 3 matrix (in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. Alternatively, the sum of the (n+1)st powers of the roots of the corresponding characteristic polynomial: x^3 - 2*x^2 - x + 1 = 0. a(n) = A006356(n) + A006356(n-1) + 2*A006356(n-2). E.g., a(3) = 26 = the trace of M^4. The characteristic polynomial of this matrix (see A066170) is x^3 - 2*x^2 - x + 1 and the roots are 2.24697960372..., -0.8019377358... and 0.55495813208... = a, b, c. Then Sum(a^4 + b^4 + c^4) = 26. - Gary W. Adamson, Feb 01 2004
(-1)^(n+1)*a(n) = (c(1))^(-n-1) + (c(2))^(-n-1) + (c(3))^(-n-1) = (c(1)c(2))^(n+1) + (c(1)c(4))^(n+1) + (c(2)c(4))^(n+1) = (s(1)/s(2))^(n+1) + (s(2)/s(4))^(n+1) + (s(4)/s(1))^(n+1), where c(j) := 2*cos(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
a(n) = 3*A077998(n+1) - A006054(n+2) - A006054(n+1). - Roman Witula, Aug 13 2012
a(n)*(-1)^(n+1) = (A094648(n+1)^2 - A094648(2*(n+1)))/2. - Roman Witula, Sep 30 2012

A094648 An accelerator sequence for Catalan's constant.

Original entry on oeis.org

3, -1, 5, -4, 13, -16, 38, -57, 117, -193, 370, -639, 1186, -2094, 3827, -6829, 12389, -22220, 40169, -72220, 130338, -234609, 423065, -761945, 1373466, -2474291, 4459278, -8034394, 14478659, -26088169, 47011093, -84708772, 152642789, -275049240
Offset: 0

Views

Author

Paul Barry, May 18 2004

Keywords

Comments

The pair A094648 and the alternating sequence A033304 when joined form a two-sided sequence defined by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(-1)=-2, x(0)=3, x(1)=-1 - for details see Witula's comments to A033304. - Roman Witula, Jul 25 2012
From Roman Witula, Aug 09 2012: (Start)
There exist two interesting subsequences b(n) and c(n) of the given above sequence x(n) defined by the following relations: b(n)=a(2^n) and c(n)=x(-2^n). These subsequences satisfy the following system of recurrence equations:
b(n+1)=b(n)^2-2*c(n), and c(n+1)=c(n)^2-2*b(n),
which easily follow from the general identity: x(n)^2=x(2*n)-2*x(-n), n in Z. We note that b(0)=-1, b(1)=5, b(2)=13, b(3)=117, c(0)=-2, c(1)=6, c(2)=26, c(3)=650. From the above system we deduce that all b(n) are odd, whereas all c(n) are even. Moreover we obtain c(n+1)-b(n+1)=(c(n)-b(n))*(b(n)+c(n)+2), which yields b(n+1)-c(n+1)=product{k=1,..,n}(b(k)+c(k)+2)=13*product{k=2,..,n}(b(k)+c(k)+2)=13^2*41*product{k=3,..,n}(b(k)+c(k)+2). It follows that b(n)-c(n) is divisible by 13^2*41 for every n=3,4,..., and after using the above system again each b(n) and c(n), for n=2,3,..., is divisible by 13. (End)
If we set W(n):=3*A077998(n)-A006054(n+1)-A006054(n), n=0,1,..., then a(n)=(W(n)^2-W(2*n))/2 and W(n) = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (-c(1)*c(2))^n + (-c(1)*c(4))^n + (-c(2)*c(4))^n = (-1-c(1))^n + (-1-c(2))^n + (-1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula-Slota-Warzynski's paper. Moreover it follows from the comment at the top and from comments to A033304 that W(n+1)=A033304(n)=(-1)^(n+1)*x(-n-1). - Roman Witula, Aug 11 2012
The following trigonometric type identitities hold true: (1) -a(n-1)-a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and (2) a(n)-a(n+2) = c(4)*c(2)^(n+1) + c(1)*c(4)^(n+1) + c(2)*c(1)^(n+1), where a(-1)=-2 and c(j) is defined as above (see also the respective comment to A033304). For the proof see Remark 6 in Witula's paper. - Roman Witula, Aug 14 2012
It can be proved that A033304(n-1)*(-1)^n = (a(n)^2 - a(2*n))/2, n=1,2,... - Roman Witula, Sep 30 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 19 for the argument 2*Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

Examples

			We have a(17) = a(19) + 50000, a(4) + a(5) = -3, 2*a(7) + a(8) = 3, and 2*a(9) + a(10) = a(5). - _Roman Witula_, Sep 14 2012
		

Crossrefs

Programs

  • Magma
    I:=[3,-1,5]; [n le 3 select I[n]  else -Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    CoefficientList[ Series[(3 + 2x - 2x^2)/(1 + x - 2x^2 - x^3), {x, 0, 33}], x] (* Robert G. Wilson v, May 24 2004 *)
    a[n_] := Round[(2Sin[3Pi/14])^n + (-2Sin[Pi/14])^n + (-2Cos[Pi/7])^n]; Table[ a[n], {n, 0, 33}] (* Robert G. Wilson v, May 24 2004 *)
    LinearRecurrence[{-1,2,1}, {3,-1,5}, 50] (* Roman Witula, Aug 09 2012 *)
  • PARI
    x='x+O('x^30); Vec((3+2*x-2*x^2)/(1+x-2*x^2-x^3)) \\ G. C. Greubel, May 09 2018

Formula

G.f.: (3+2*x-2*x^2)/(1+x-2*x^2-x^3);
a(n) = (2*sin(3*Pi/14))^n+(-2*sin(Pi/14))^n+(-2*cos(Pi/7))^n.
a(p) == -1 mod(p), p prime. - Philippe Deléham, Oct 03 2009
a(n) = (2*cos(2*Pi/7))^n + (2*cos(4*Pi/7))^n + (2*cos(8*Pi/7))^n, which is equivalent to the formula given above (for analogous sums with sines see A215493 and A215494). Moreover we have a(n+3) + a(n+2) - 2a(n+1) - a(n) = 0 - for the proof see Witula-Slota's paper. - Roman Witula, Jul 24 2012
a(n) = 3*(-1)^n*A006053(n+2) +2*A078038(n-1). - R. J. Mathar, Nov 03 2020

A085810 Number of three-choice paths along a corridor of height 5, starting from the lower side.

Original entry on oeis.org

1, 2, 5, 13, 35, 96, 266, 741, 2070, 5791, 16213, 45409, 127206, 356384, 998509, 2797678, 7838801, 21963661, 61540563, 172432468, 483144522, 1353740121, 3793094450, 10628012915, 29779028189, 83438979561, 233790820762, 655067316176, 1835457822857, 5142838522138, 14409913303805
Offset: 1

Views

Author

Philippe Deléham, Jul 25 2003

Keywords

Comments

From Svjetlan Feretic, Jun 01 2013: (Start)
A three-choice path is a path whose steps lie in the set {(1,1), (1,0), (1,-1)}.
The paths under consideration "live" in a corridor like 0<=y<=5. Thus, the ordinate of a vertex of a path can take six values (0,1,2,3,4,5), but the height of the corridor is five.
a(1)=1 is the number of paths with zero steps, a(2)=2 is the number of paths with one step, a(3)=5 is the number of paths with two steps, ...
Narrower corridors produce A000012, A000079, A000129, A001519, A057960. An infinitely wide corridor would produce A005773.
(End)
Diagonal sums of A114164. - Paul Barry, Nov 15 2005
C(n):= a(n)*(-1)^n appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= A181880(n-2)*(-1)^n, and A(n)= A116423(n+1)*(-1)^(n+1). For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.
a(n) is also the number of bi-wall directed polygons with n cells. (The definition of bi-wall directed polygons is given in the article on A122737.)

Crossrefs

Programs

  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3).
From Paul Barry, Nov 15 2005: (Start)
G.f.: (1-2*x)/(1-4*x+3*x^2+x^3).
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, j)*C(j+k, 2k));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, k+j)*C(k, k-j)*2^(n-2k-j));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-2*k} C(n-j, n-2*k-j)*C(k, j)(-1)^j*2^(n-2*k-j)). (End)
a(n-1) = -B(n;-1) = (1/7)*((c(4)-c(1))*(1-c(1))^n + (c(1)-c(2))*(1-c(2))^n + (c(2)-c(4))*(1-c(4))^n), where a(-1):=0, c(j):=2*cos(2*Pi*j/7). Moreover, B(n;d), n in N, d in C, denotes the respective quasi-Fibonacci number defined in comments to A121449 or in Witula-Slota-Warzynski's paper (see also A077998, A006054, A052975, A094789, A121442). - Roman Witula, Aug 09 2012

Extensions

Name corrected and clarified, and offset 1 from Svjetlan Feretic, Jun 01 2013

A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005
The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011
Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1}, {1,4,14}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

Formula

a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014
a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012
a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013

A038196 3-wave sequence starting with 1, 1, 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899, 4688460, 5846414
Offset: 0

Views

Author

Keywords

Comments

The 3-wave sequence with initial values a, b, c is formed by the following construction:
a.......a+b+c............3a+5b+6c...
..b...b+c...a+2b+2c..2a+4b+5c...
....c..........a+2b+3c...

References

  • J. Kappraff, Beyond Measure, World Scientific, Inc. 2002, p. 497.

Crossrefs

a(2n) forms A006356, a(2n+1) ("the middle row") forms A006054. Cf. A038197, A038201, A187070.

Programs

  • PARI
    a(n)=if(n>-1,polcoeff((1+x-x^2)/(1-2*x^2-x^4+x^6)+x*O(x^n),n),if(n<-3,polcoeff((1-x-x^2)/(1-x^2-2*x^4+x^6)+O(x^(-3-n)),-4-n),0))

Formula

a(n) = a(n-1) + a(n-2) if n is odd,
a(n) = a(n-1) + a(n-4) if n is even.
Also: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: (1 + x - x^2)/(1 - 2*x^2 - x^4 + x^6).

Extensions

Edited by Floor van Lamoen, Feb 05 2002

A052534 Expansion of (1-x)*(1+x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Pairwise sums of A006356. Cf. A033303, A077850. - Ralf Stephan, Jul 06 2003
Number of (3412, P)-avoiding involutions in S_{n+1}, where P={1342, 1423, 2314, 3142, 2431, 4132, 3241, 4213, 21543, 32154, 43215, 15432, 53241, 52431, 42315, 15342, 54321}. - Ralf Stephan, Jul 06 2003
Number of 31- and 22-avoiding words of length n on alphabet {1,2,3} which do not end in 3 (e.g., at n=3, we have 111, 112, 121, 132, 211, 212, 232, 321 and 332). See A028859, A001519. - Jon Perry, Aug 04 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then the sequence 1,1,2,4,... with g.f. (1-x-x^2)/(1-2x-x^2+x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+1)-sequences whose flatsteps all occur at level <=1 and whose height is <=2. For example, a(5)=45 counts all 51 Motzkin 6-paths except FUUFDD, UFUFDD, UUFDDF, UUFDFD, UUFFDD, UUUDDD (the first five violate the flatstep restriction and the last violates the height restriction). - David Callan, Dec 09 2004
From Paul Barry, Nov 03 2010: (Start)
The g.f. of 1,1,2,4,9,... can be expressed as 1/(1-x/(1-x/(1-x^2))) and as 1/(1-x-x^2/(1-x-x^2)).
The second expression shows the link to the Motzkin numbers. (End)
From Emeric Deutsch, Oct 31 2010: (Start)
a(n) is the number of compositions of n into odd summands when we have two kinds of 1's. Proof: the g.f. of the set S={1,1',3,5,7,...} is g=2x+x^3/(1-x^2) and the g.f. of finite sequences of elements of S is 1/(1-g). Example: a(4)=20 because we have 1+3, 1'+3, 3+1, 3+1', and 2^4=16 of sums x+y+z+u, where x,y,z,u are taken from {1,1'}.
(End)
a(n-1) is the top left entry of the n-th power of any of the six 3 X 3 matrices [1, 1, 0; 1, 1, 1; 0, 1, 0] or [1, 1, 1; 0, 1, 1; 1, 1, 0] or [1, 0, 1; 1, 1, 1; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 0, 1, 1] or [1, 0, 1; 0, 0, 1; 1, 1, 1] or [1, 1, 0; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 20*x^4 + 45*x^5 + 101*x^6 + 227*x^7 + 510*x^8 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    [n le 3 select 2^(n-1) else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,2,4},40] (* Roman Witula, Aug 07 2012 *)
    CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
    a[ n_] := {0, 1, 0} . MatrixPower[{{1, 1, 1}, {1, 1, 0}, {1, 0, 0}}, n+1] . {0, 1, 0}; (* Michael Somos, Dec 12 2023 *)
  • Maxima
    h(n):=if n=0 then 1 else sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n<2 then h(n) else h(n)-h(n-2); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-2*x-x^2+x^3)) \\ G. C. Greubel, May 09 2019
    
  • PARI
    {a(n) = [0, 1, 0] * [1, 1, 1; 1, 1, 0; 1, 0, 0]^(n+1) * [0, 1, 0]~}; /* Michael Somos, Dec 12 2023 */
    
  • SageMath
    ((1-x^2)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - 2*x - x^2 + x^3).
a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=2, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-2*x-x^2+x^3)} (1/7)*(2 + alpha)*alpha^(-1-n).
a(n) = central term in the (n+1)-th power of the 3 X 3 matrix (shown in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. E.g. a(6) = 101 since the central term in M^7 = 101. - Gary W. Adamson, Feb 01 2004
a(n) = A006054(n+2) - A006054(n). - Vladimir Kruchinin, Sep 09 2010
a(n) = A077998(n+2) - 2*A006054(n+2), which implies 7*a(n-2) = (2 + c(4) - 2*c(2))*(1 + c(1))^n + (2 + c(1) - 2*c(4))*(1 + c(2))^n + (2 + c(2) - 2*c(1))*(1 + c(4))^n, where c(j)=2*Cos(2Pi*j/7), a(-2)=a(-1)=1 since A077998 and A006054 are equal to the respective quasi-Fibonacci numbers. [Witula, Slota and Warzynski] - Roman Witula, Aug 07 2012
a(n+1) = A033303(n+1) - A033303(n). - Roman Witula, Sep 14 2012
a(n) = A006054(n+2)-A006054(n). - R. J. Mathar, Nov 23 2020
a(n) = A028495(-1-n) for all n in Z. - Michael Somos, Dec 12 2023

A052975 Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).

Original entry on oeis.org

1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n>=0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the second Maple program. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
a(n) = A028495(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = Sum (1/7*(2-3*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+5*_Z-6*_Z^2+_Z^3))
From Herbert Kociemba, Jun 11 2004: (Start)
a(n) = (2/7)*Sum_{r=1..6} sin(r*3*Pi/7)^2*(2*cos(r*Pi/7))^(2*n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). (End)
a(n) = 2^n*A(n;1/2) = (1/7)*(s(2)^2*c(4)^(2n) + s(4)^2*c(1)^(2n) + s(1)^2*c(2)^(2n)), where c(j):=2*cos(2Pi*j/7) and s(j):=2*sin(2*Pi*j/7). Here A(n;d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A094789, A085810, A077998, A006054, A121442). I note that my and the respective Herbert Kociemba's formulas are "compatible". - Roman Witula, Aug 09 2012
a(n) = A005021(n)-3*A005021(n-1)+2*A005021(n-2). - R. J. Mathar, Feb 27 2019

A121449 Expansion of (1 - 3*x + 2*x^2)/(1 - 4*x + 3*x^2 + x^3).

Original entry on oeis.org

1, 1, 3, 8, 22, 61, 170, 475, 1329, 3721, 10422, 29196, 81797, 229178, 642125, 1799169, 5041123, 14124860, 39576902, 110891905, 310712054, 870595599, 2439354329, 6834918465, 19151015274, 53659951372, 150351841201, 421276495414, 1180390506681, 3307380699281
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 07 2012: (Start)
In the cited Witula-Slota-Warzynski paper three so-called quasi-Fibonacci numbers A(n;d), B(n;d) and C(n;d), where n = 0,1,...,d \in C are discussed. These numbers are created by each of the following relations:
(1+d*c(j))^n = A(n;d) + B(n;d)*c(j) + C(n;d)*c(2*j), for every j=1,2,4, where c(j):=2*cos(2*Pi*j/7).
In fact all these "numbers" are integer polynomials of the argument d.
In the sequel for d=-1 we obtain A(n;-1)=a(n), B(n+1;-1)=-A085810(n).
Moreover, we have A(n;1)=A077998(n), B(n;1)=A006054(n+1), C(n;1)=A006054(n), and A(n;2)=A121442(n).
We note that the elements of the sequences A(n;-1), B(n;-1), and C(n;-1) satisfy the following system of recurrence equations:
A(0;-1)=1, B(0;-1)=C(0;-1)=0,
A(n+1;-1)=A(n;-1)-2*B(n;-1)+C(n;-1),
B(n+1;-1)=-A(n;-1)+B(n;-1), C(n+1;-1)=-B(n;-1)+2*C(n;-1).
It is proved that binomial transforms of the sequences: A(n;1), B(n;1), and C(n;1) are equal to the following sequences:
A(n;1)*(A(n;-1)-C(n;-1))-B(n;1)*(B(n;-1)+C(n;-1))+C(n;1)*B(n;-1), -A(n;1)*C(n;-1)+B(n;1)*(A(n;-1)-C(n;-1))-C(n;1)*(B(n;-1)-C(n;-1)), and
A(n;1)*(B(n;-1)-C(n;-1))-B(n;1)*B(n;-1)+C(n;1)*(A(n;-1)-B(n;-1)+C(n;-1)), respectively, whereas we have
A(n;-1) = Sum_{k=0..n} binomial(n,k)*(A(k;1)*A(n-k;1)-A(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)+2*B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)),
B(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(k;1)*C(n-k;1)+B(k;1)*B(n-k;1)-A(n-k;1)*C(k;1)+B(n-k;1)*C(k;1)-C(k;1)*C(n-k;1)), and
C(n;-1) = Sum_{k=0..n} binomial(n,k)*(-A(k;1)*B(n-k;1)+A(n-k;1)*B(k;1)+B(k;1)*B(n-k;1)-B(k;1)*C(n-k;1)-A(n-k;1)*C(k;1)) (see identities (3.50-52) and (3.61-63) in the Witula-Slota-Warzynski paper).
(End)

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    CoefficientList[Series[(1 - 3*x + 2*x^2)/(1-4*x + 3*x^2 + x^3), {x, 0, 200}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{4,-3,-1},{1,1,3},50] (* Roman Witula, Aug 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((1-3*x+2*x^2)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(0)=a(1)=1, a(2)=3, a(n+1) = 4*a(n) - 3*a(n-1) - a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-c(1))^n + (2-c(1))*(1-c(2))^n + (2-c(2))*(1-c(4))^n = (s(2))^2*(1-c(1))^n + (s(4))^2*(1-c(2))^n + (s(1))^2*(1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7) -- it is the special case, for d=-1, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in the Witula-Slota-Warzynski paper. - Roman Witula, Aug 07 2012

Extensions

More terms from Stefan Steinerberger, Sep 11 2006
a(27)-a(29) from Vincenzo Librandi, Sep 18 2015
Previous Showing 11-20 of 58 results. Next