cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 353 results. Next

A377434 Numbers k such that there is a unique perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

2, 6, 15, 18, 22, 25, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 329, 342, 357, 367, 378, 393, 400
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains two perfect-powers (8,9), so 4 is not in the sequence.
Primes 5 and 6 are 11 and 13, and the interval (12) contains no perfect-powers, so 5 is not in the sequence.
Primes 6 and 7 are 13 and 17, and the interval (14,15,16) contains just one perfect-power (16), so 6 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A377467.
For prime-powers we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360.
These are the positions of 1 in A377432.
For no perfect-powers we have A377436.
For more than one perfect-power we have A377466.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A031218 gives the greatest prime-power <= n.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A345531 gives the least prime-power > prime(n), difference A377281.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]==1&]

A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1

Views

Author

Don Reble, Jun 28 2003

Keywords

Comments

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

Examples

			a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od
    end proc:
    seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
  • PARI
    a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

Formula

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

A023506 Exponent of 2 in prime factorization of prime(n) - 1.

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 5, 2, 1, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 6, 2, 1, 1, 1, 1, 2, 3, 1, 4, 1, 8, 1, 2, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 5, 1, 1, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 4, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Keywords

Comments

Also the number of steps to reach an integer starting with prime(n)/2 and iterating the map x->x*ceiling(x). - Benoit Cloitre, Sep 06 2002
Also exponent of 2 in -1 + prime(n)^s for odd exponents s because (-1 + prime(n)^s)/(prime(n) - 1) is odd. - Labos Elemer, Jan 20 2004
First occurrence of 0,1,2,3,4,...: 1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, ..., for primes 2, 3, 5, 41, 17, 97, 193, 641, 257, 7681, 13313, 18433, 12289, 40961, 114689, 163841, 65537, 1179649, 786433, 5767169, 7340033, .... - Robert G. Wilson v, May 28 2009
By Dirichlet's theorem on arithmetic progressions, the asymptotic density of primes p such that p == 1 (mod 2^k) within all the primes is 1/2^(k-1), for k >= 1. This is also the asymptotic density of terms in this sequence that are >= k. Therefore, the asymptotic density of the occurrences of k in this sequence is d(k) = 1/2^(k-1) - 1/2^k = 1/2^k, and the asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2. - Amiram Eldar, Mar 14 2025

Examples

			For n = 25, prime(25) = 97, A006093(25) = 96 = 2*2*2*2*2*3, so a(25) = 5.
		

Crossrefs

Subsequence of A001511 (except 1st term).

Programs

  • Magma
    [Valuation(NthPrime(n)-1, 2): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    A023506:= x -> padic[ordp](ithprime(x)-1,2):
    seq(A023506(x),x=1..1000); # Robert Israel, May 06 2014
  • Mathematica
    f[n_] := Block[{fi = First@ FactorInteger[ Prime@n - 1]}, If[ fi[[1]] == 2, fi[[2]], 0]]; Array[f, 105] (* Robert G. Wilson v, May 28 2009 *)
    Table[IntegerExponent[Prime[n] - 1, 2], {n, 110}] (* Bruno Berselli, Aug 05 2013 *)
  • PARI
    A023506(n) = {local(m,r);r=0;m=prime(n)-1;while(m%2==0,m=m/2;r++);r} \\ Michael B. Porter, Jan 26 2010
    
  • PARI
    forprime(p=2, 700, print1(valuation(p-1,2),", ")); \\ Bruno Berselli, Aug 05 2013
    
  • Python
    from sympy import prime
    def A023506(n): return (~(m:=prime(n)-1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A025052 Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably the list is complete).

Original entry on oeis.org

1, 2, 4, 6, 10, 18, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1

Views

Author

Keywords

Comments

According to Borwein and Choi, if the Generalized Riemann Hypothesis is true, then this sequence has no larger terms, otherwise there may be one term greater than 10^11. - T. D. Noe, Apr 08 2004
Note that n+1 must be prime for all n in this sequence. - T. D. Noe, Apr 28 2004
Borwein and Choi prove (Theorem 6.2) that the equation N=xy+xz+yz has an integer solution x,y,z>0 if N contains a square factor and N is not 4 or 18. In the following simple proof explicit solutions are given. Let N=mn^2, m,n integer, m>0, n>1. If n3: x=6, y=n-3, z=n^2-4n+6. If n>m+1: if n=0 (mod m+1): x=m+1, y=m(m+1), z=m(n^2/(m+1)^2-1), if n=k (mod m+1), 0

Crossrefs

Subsequence of A000926 (numbers not of the form ab+ac+bc, 0A006093.
Cf. A093669 (numbers having a unique representation as ab+ac+bc, 0A093670 (numbers having a unique representation as ab+ac+bc, 0<=a<=b<=c).

Programs

  • Mathematica
    n=500; lim=Ceiling[(n-1)/2]; lst={}; Do[m=a*b+a*c+b*c; If[m<=n, lst=Union[lst, {m}]], {a, lim}, {b, lim}, {c, lim}]; Complement[Range[n], lst]

Extensions

Corrected by R. H. Hardin

A373674 Last element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Max/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024

A025527 a(n) = n!/lcm{1,2,...,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), ..., C(n-1,n-1)}.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 522547200, 522547200, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000
Offset: 1

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = a(n-1) iff n is prime. Thus a(1)=a(2)=a(3)=1 is the only triple in this sequence. - Franz Vrabec, Sep 10 2005
a(k) = a(k+1) for k in A006093. - Lekraj Beedassy, Aug 03 2006
Partial products of A048671. - Peter Luschny, Sep 09 2009

Examples

			a(5) = 2 as 5!/lcm(1..5) = 120/60 = 2.
		

Crossrefs

Programs

Formula

a(n) = A000142(n)/A003418(n) = A000254(n)/A025529(n). - Franz Vrabec, Sep 13 2005
log a(n) = n log n - 2n + O(n/log^4 n). (The error term can be improved. On the Riemann Hypothesis it is O(n^k) for any k > 1/2.) - Charles R Greathouse IV, Oct 16 2012
a(n) = A205957(n), 1 <= n <= 11. - Daniel Forgues, Apr 22 2014
Conjecture: a(A006093(n)) = phi(A000142(A006093(n))) / phi(A003418(A006093(n))), where phi is the Euler totient function. - Fred Daniel Kline, Jun 03 2017

A035095 Smallest prime congruent to 1 (mod prime(n)).

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Author

Keywords

Comments

This is a version of the "least prime in special arithmetic progressions" problem.
Smallest numbers m such that largest prime factor of Phi(m) = prime(n), the n-th prime, also seems to be prime and identical to n-th term of A035095. See A068211, A068212, A065966: Min[x : A068211(x)=prime(n)] = A035095(n); e.g., Phi(a(7)) = Phi(103) = 2*3*17, of which 17 = p(7) is the largest prime factor, arising first here.
It appears that A035095, A066674, A125878 are probably all the same, but see the comments in A066674. - N. J. A. Sloane, Jan 05 2013
Minimum of the smallest prime factors of F(n,i) = (i^prime(n)-1)/(i-1), when i runs through all integers in [2, prime(n)]. Every prime factor of F(n,i) is congruent to 1 modulo prime(n). - Vladimir Shevelev, Nov 26 2014
Conjecture: a(n) is the smallest prime p such that gpf(p-1) = prime(n). See A023503. - Thomas Ordowski, Aug 06 2017
For n>1, a(n) is the smallest prime congruent to 1 mod (2*prime(n)). - Chai Wah Wu, Apr 28 2025

Examples

			a(8) = 191 because in the prime(8)k+1 = 19k+1 sequence, 191 is the smallest prime.
		

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd 1 (reprinted Chelsea 1953).
  • E. C. Titchmarsh, A divisor problem, Renc. Circ. Math. Palermo, 54 (1930) pp. 414-429.
  • P. Turan, Über Primzahlen der arithmetischen Progression, Acta Sci. Math. (Szeged), 8 (1936/37) pp. 226-235.

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n]}, r = 1 + p; While[ !PrimeQ[r], r += p]; r]; Array[a, 51] (* Jean-François Alcover, Sep 20 2011, after PARI *)
    a[n_]:=If[n<2,3,Block[{p=Prime[n]},r=1+2*p;While[!PrimeQ[r],r+=2*p]];r];Array[a,51] (* Zak Seidov, Dec 14 2013 *)
  • PARI
    a(n)=local(p,r);p=prime(n);r=1;while(!isprime(r),r+=p);r
    
  • PARI
    {my(N=66); forprime(p=2, , forprime(q=p+1,10^10, if((q-1)%p==0, print1(q,", "); N-=1; break)); if(N==0,break)); } \\ Joerg Arndt, May 27 2016
    
  • Python
    from itertools import count
    from sympy import prime, isprime
    def A035095(n): return 3 if n==1 else next(filter(isprime,count((p:=prime(n)<<1)+1,p))) # Chai Wah Wu, Apr 28 2025

Formula

According to a long-standing conjecture (see the 1979 Wagstaff reference), a(n) <= prime(n)^2 + 1. This would be sufficient to imply that a(n) is the smallest prime such that greatest prime divisor of a(n)-1 is prime(n), the n-th prime: A006530(a(n)-1) = A000040(n). This in turn would be sufficient to imply that no value occurs twice in this sequence. - Franklin T. Adams-Watters, Jun 18 2010
a(n) = 1 + A035096(n)*A000040(n). - Zak Seidov, Dec 27 2013

Extensions

Edited by Franklin T. Adams-Watters, Jun 18 2010
Minor edits by N. J. A. Sloane, Jun 27 2010
Edited by N. J. A. Sloane, Jan 05 2013

A060800 a(n) = p^2 + p + 1 where p runs through the primes.

Original entry on oeis.org

7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221
Offset: 1

Author

Jason Earls, Apr 27 2001

Keywords

Comments

Terms are divisible by 3 iff p is of the form 6*m+1 (A002476). - Michel Marcus, Jan 15 2017

Examples

			a(3) = 31 because 5^2 + 5 + 1 = 31.
		

Crossrefs

Programs

  • Magma
    [p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014
  • Maple
    A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)):
    seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011
  • Mathematica
    #^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)
  • PARI
    { n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009
    

Formula

a(n) = A036690(n) + 1.
a(n) = 1 + A008864(n)*A000040(n) = (A030078(n) - 1)/A006093(n). - Reinhard Zumkeller, Aug 06 2007
a(n) = sigma(prime(n)^2) = A000203(A000040(n)^2). - Zak Seidov, Feb 13 2016
a(n) = A000203(A001248(n)). - Michel Marcus, Feb 15 2016
Product_{n>=1} (1 - 1/a(n)) = zeta(3)/zeta(2) (A253905). - Amiram Eldar, Nov 07 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
Previous Showing 41-50 of 353 results. Next