cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A063523 a(n) = n*(8*n^2 - 5)/3.

Original entry on oeis.org

0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Comments

Also as a(n)=(1/6)*(16*n^3-10*n), n>0: structured octagonal anti-diamond numbers (vertex structure 17) (Cf. A100187 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

  • Mathematica
    Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
  • PARI
    a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009

Formula

a(0)=0, a(1)=1, a(2)=18, a(3)=67, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 11 2011
G.f.: (x+14*x^2+x^3)/(x-1)^4. - Harvey P. Dale, Jul 11 2011
E.g.f.: (x/3)*(3 + 24*x + 8*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A053307 Number of nonnegative integer 2 X 2 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 5, 11, 14, 24, 30, 45, 55, 76, 91, 119, 140, 176, 204, 249, 285, 340, 385, 451, 506, 584, 650, 741, 819, 924, 1015, 1135, 1240, 1376, 1496, 1649, 1785, 1956, 2109, 2299, 2470, 2680, 2870, 3101, 3311, 3564, 3795, 4071, 4324, 4624, 4900, 5225, 5525
Offset: 0

Views

Author

Vladeta Jovovic, Mar 05 2000

Keywords

Comments

An interleaved sequence of pyramidal and polygonal numbers: a(2n)= A006527(n+1), a(2n+1)=A000330(n+1) - Paul Barry, Mar 17 2003
a(n) is also the number of solutions to the equation XOR(x1, x2, ..., xn) = 0 such that each xi is a 2-bit binary number and xi >= xj for i >= j. For example, a(2) = 4 since (x1, x2) = { (00, 00), (01, 01), (10, 10), (11, 11) }. - Ramasamy Chandramouli, Jan 17 2009
These are also the "spreading numbers" alpha_4(n). See Babcock et al. for precise definition.

Crossrefs

Row 2 of A318795.
Row 4 of A202175.

Programs

  • Magma
    [(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48: n in [0..30]]; // G. C. Greubel, May 31 2018
  • Mathematica
    Table[(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48,{n,0,20}] (* Vaclav Kotesovec, Mar 16 2014 *)
  • PARI
    for(n=0,30, print1((n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48, ", ")) \\ G. C. Greubel, May 31 2018
    

Formula

G.f.: (x^2-x+1)/((1-x^2)^2*(1-x)^2).
a(n) = (n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48. - Vaclav Kotesovec, Mar 16 2014

A351153 Triangle read by rows: T(n, k) = n*(k - 1) - k*(k - 3)/2 with 0 < k <= n.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 8, 10, 1, 6, 10, 13, 15, 1, 7, 12, 16, 19, 21, 1, 8, 14, 19, 23, 26, 28, 1, 9, 16, 22, 27, 31, 34, 36, 1, 10, 18, 25, 31, 36, 40, 43, 45, 1, 11, 20, 28, 35, 41, 46, 50, 53, 55, 1, 12, 22, 31, 39, 46, 52, 57, 61, 64, 66, 1, 13, 24, 34, 43, 51, 58, 64, 69, 73, 76, 78
Offset: 1

Views

Author

Stefano Spezia, Feb 02 2022

Keywords

Comments

Except for the number 2, it contains all the positive integers.

Examples

			Triangle begins:
  1;
  1, 3;
  1, 4,  6;
  1, 5,  8, 10;
  1, 6, 10, 13, 15;
  1, 7, 12, 16, 19, 21;
  1, 8, 14, 19, 23, 26, 28;
  ...
		

Crossrefs

Cf. A000012 (1st column), A000217 (leading diagonal), A005843 (3rd column), A006007 (sum of the first n rows), A006527 (row sums).

Programs

  • Mathematica
    Flatten[Table[n(k-1)-k(k-3)/2,{n,12},{k,n}]]

Formula

T(n, k) = 1 + Sum_{i=1..k-1} (n - i + 1).
From R. J. Mathar, Feb 07 2022: (Start)
G.f.: x*y*(1 - x + y*x^2 + y^2*x^3)/((1 - x)^2*(1 - y*x)^3).
T(n, k) = 1 + A141418(n+1, k-1) = 1 + A087401(n+1, k-1). (End)

A027602 a(n) = n^3 + (n+1)^3 + (n+2)^3.

Original entry on oeis.org

9, 36, 99, 216, 405, 684, 1071, 1584, 2241, 3060, 4059, 5256, 6669, 8316, 10215, 12384, 14841, 17604, 20691, 24120, 27909, 32076, 36639, 41616, 47025, 52884, 59211, 66024, 73341, 81180, 89559, 98496, 108009, 118116, 128835, 140184
Offset: 0

Views

Author

Keywords

Comments

a(3) = 216 = 6^3 (a cube). - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008
Pairs [n,a(n)] for n<=10^7 such that a(n) is a perfect power are [0, 9], [1, 36], [3, 216], [23, 41616]. - Joerg Arndt, Jan 25 2011
Sums of three consecutive cubes. - Al Hakanson (hawkuu(AT)gmail.com), May 20 2009

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 1*a(n-4) for n>=4.
a(n) = 9*A006527(n+1). - Lekraj Beedassy, Feb 01 2007
a(n) = 3*n^3 + 9*n^2 + 15*n + 9.
G.f.: 9*(1+x^2)/(1-x)^4. - Bruno Berselli, Jan 21 2011
a(n) = A008585(n+1)*A059100(n+1). - Bruno Berselli, Jan 21 2011
E.g.f.: 3*(3 + 9*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2022
Sum_{n>=0} 1/a(n) = (2*gamma + polygamma(0, 1-i*sqrt(2)) + polygamma(0, 1+i*sqrt(2)))/12 = 0.161383557127191633050394086192620963436504... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

A327083 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 11, 12, 1, 5, 24, 87, 40, 1, 6, 45, 416, 1197, 184, 1, 7, 76, 1475, 18592, 42660, 1296, 1, 8, 119, 4236, 166885, 3017600, 4223313, 17072, 1, 9, 176, 10437, 1019880, 85025050, 1748176768, 1139277096, 424992
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
A(n,k) is also the number of oriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of oriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2    3     4      5       6       7        8        9        10 ...
  1  4   11    24     45      76     119      176      249       340 ...
  1 12   87   416   1475    4236   10437    22912    45981     85900 ...
  1 40 1197 18592 166885 1019880 4738153 17962624 58248153 166920040 ...
  ...
For A(2,3) = 11, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327084 (unoriented), A327085 (chiral), A327086 (achiral), A327087 (exactly k colors), A324999 (vertices, facets), A337883 (faces, peaks), A337407 (orthotope edges, orthoplex ridges), A337411 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A006527, A046023, A331350.
Column 2 is A218144(n+1).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p,-1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p,-1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#] j^Total[CycleX[#]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327087(n,j) * binomial(k,j).
A(n,k) = A327084(n,k) + A327085(n,k) = 2*A327084(n,k) - A327086(n,k) = 2*A327085(n,k) + A327086(n,k).

A094414 Triangle T read by rows: dot product <1,2,...,r> * .

Original entry on oeis.org

1, 5, 4, 14, 11, 11, 30, 24, 22, 24, 55, 45, 40, 40, 45, 91, 76, 67, 64, 67, 76, 140, 119, 105, 98, 98, 105, 119, 204, 176, 156, 144, 140, 144, 156, 176, 285, 249, 222, 204, 195, 195, 204, 222, 249, 385, 340, 305, 280, 265, 260, 265, 280, 305, 340, 506, 451, 407, 374, 352, 341, 341, 352, 374, 407, 451
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Offset for r (the rows) is 1, for s (the columns) it is 0.

Examples

			Triangle begins as:
   1;
   5,  4;
  14, 11, 11;
  30, 24, 22, 24;
  55, 45, 40, 40, 45;
  91, 76, 67, 64, 67, 76;
		

Crossrefs

Row sums are A000537.
See also A094415, A088003.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n-1], k-> n*((n+1)*(2*n+1) -3*k*(n-k))/6 ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [n*((n+1)*(2*n+1) -3*k*(n-k))/6: k in [0..n-1], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    T:=proc(r,s) if s>=r then 0 else r*(2*r^2+3*r+1-3*r*s+3*s^2)/6 fi end: for r from 1 to 11 do seq(T(r,s),s=0..r-1) od; # yields sequence in triangular form # Emeric Deutsch, Nov 27 2006
  • Mathematica
    Table[n*((n+1)*(2*n+1) -3*k*(n-k))/6, {n,0,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = n*((n+1)*(2*n+1) -3*k*(n-k))/6;
    for(n=0,12, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[n*((n+1)*(2*n+1) -3*k*(n-k))/6 for k in (0..n-1)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

T(r, s) = r*(2*r^2 + 3*r - 3*r*s + 1 + 3*s^2)/6, r >= 1, 0 <= s <= r-1.

Extensions

More terms from G. C. Greubel, Oct 30 2019

A167875 One third of product plus sum of three consecutive nonnegative integers; a(n)=(n+1)(n^2+2n+3)/3.

Original entry on oeis.org

1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

a(n) = ((n*(n+1)*(n+2))+(n+(n+1)+(n+2)))/3, n >= 0.
Equals A006527 without initial term 0: a(n) = A006527(n+1).
Binomial transform of A167876.
Inverse binomial transform of A080930.
a(n) = A007290(n+2)+n+1.
a(n) = A014820(n)/(n+1) for n > 0.
a(n) = A116731(n+2)-1.
a(n) = A033547(n+1)-n.
a(n) = A054602(n)/3.
a(n) = A086514(n+3)-2.
a(n) = A002061(n+1)+a(n-1) for n > 0.
a(n) = A005894(n)-a(n-1) for n > 0.
First bisection is A057813.
Second differences are in A004277.
a(n) = A177342(n)*(-1)+a(n-1)*5 with n>0. For n=8, a(8)=-A177342(8)+a(7)*5=-631+176*5=249. - Bruno Berselli, May 18 2010

Examples

			a(0) = (0*1*2+0+1+2)/3 = (0+3)/3 = 1.
a(1) = (1*2*3+1+2+3)/3 = (6+6)/3 = 4.
a(6)-4*a(5)+6*a(4)-4*a(3)+a(2) = 119-4*76+6*45-4*24+11 = 0. - _Bruno Berselli_, May 26 2010
		

Crossrefs

Cf. A001477 (nonnegative integers),
A006527 ((n^3+2*n)/3),
A167876 (1, 3, 4, 2, 0, 0, 0, 0, ...),
A007290 (2*C(n, 3)),
A014820 ((1/3)*(n^2+2*n+3)*(n+1)^2),
A033547 (n*(n^2+5)/3),
A054602 (Sum_{d|3} phi(d)*n^(3/d)),
A086514 ((n^3-6*n^2+14*n-6)/3),
A002061 (n^2-n+1),
A005894 (centered tetrahedral numbers),
A057813 ((2*n+1)*(4*n^2+4*n+3)/3),
A004277 (1 and the positive even numbers),
A028387 (n+(n+1)^2),

Programs

  • Magma
    [ (&*s + &+s)/3 where s is [n..n+2]: n in [0..42] ];
    
  • Mathematica
    Select[Table[(n*(n+1)*(n+2)+n+(n+1)+(n+2))/3,{n,0,5!}],IntegerQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)
    (Times@@#+Total[#])/3&/@Partition[Range[0,65],3,1]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n)=(n+1)*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (n^3+3*n^2+5*n+3)/3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+2 for n > 3; a(0)=1, a(1)=4, a(2)=11, a(3)=24.
G.f.: (1+x^2)/(1-x)^4.
a(n) = SUM(A109613(k)*A005408(n-k): 0<=k<=n). - Reinhard Zumkeller, Dec 05 2009
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4)=0 for n>3. - Bruno Berselli, May 26 2010

A324999 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 11, 5, 1, 25, 24, 15, 6, 1, 36, 45, 36, 21, 7, 1, 49, 76, 75, 56, 28, 8, 1, 64, 119, 141, 127, 84, 36, 9, 1, 81, 176, 245, 258, 210, 120, 45, 10, 1, 100, 249, 400, 483, 463, 330, 165, 55, 11, 1, 121, 340, 621, 848, 931, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.

Examples

			The array begins with A(1,1):
  1  4  9  16  25   36   49    64    81   100   121    144    169    196 ...
  1  4 11  24  45   76  119   176   249   340   451    584    741    924 ...
  1  5 15  36  75  141  245   400   621   925  1331   1860   2535   3381 ...
  1  6 21  56 127  258  483   848  1413  2254  3465   5160   7475  10570 ...
  1  7 28  84 210  463  931  1744  3087  5215  8470  13300  20280  30135 ...
  1  8 36 120 330  792 1717  3440  6471 11560 19778  32616  52104  80952 ...
  1  9 45 165 495 1287 3003  6436 12879 24355 43923  76077 127257 206493 ...
  1 10 55 220 715 2002 5005 11440 24311 48630 92433 168180 294645 499422 ...
  ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A325000 (unoriented), A325000(n,k-n) (chiral), A325001 (achiral), A325002 (exactly k colors), A327083 (edges, ridges), A337883 (faces, peaks), A325004 (orthotope facets, orthoplex vertices), A325012 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000290, A006527, A006008, A337895.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] + Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) + binomial(k,n+1).
A(n,k) = Sum_{j=1..n+1} A325002(n,j) * binomial(k,j).
A(n,k) = A325000(n,k) + A325000(n,k-n) = 2*A325000(n,k) - A325001(n,k) = 2*A325000(n,k-n) + A325001(n,k).
G.f. for row n: (x + x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * A(n,k-j).
G.f. for column k: (1 - 2*(1-x)^k + (1-x^2)^k) / (x*(1-x)^k) - 2*k.

A126615 Denominators in a harmonic triangle.

Original entry on oeis.org

1, 2, 2, 2, 6, 3, 2, 6, 12, 4, 2, 6, 12, 20, 5, 2, 6, 12, 20, 30, 6, 2, 6, 12, 20, 30, 42, 7, 2, 6, 12, 20, 30, 42, 56, 8, 2, 6, 12, 20, 30, 42, 56, 72, 9, 2, 6, 12, 20, 30, 42, 56, 72, 90, 10, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 11, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 12, 2, 6
Offset: 1

Views

Author

Gary W. Adamson, Feb 09 2007

Keywords

Comments

The harmonic triangle uses the terms of this sequence as denominators, with numerators = 1: (1/1; 1/2, 1/2; 1/2, 1/6, 1/3; 1/2, 1/6, 1/12, 1/4; 1/2, 1/6, 1/12, 1/10, 1/5; ...). Row sums of the harmonic triangle = 1.

Examples

			Triangle T(n,k) begins:
  1;
  2,  2;
  2,  6,  3;
  2,  6, 12,  4;
  2,  6, 12, 20,  5;
  2,  6, 12, 20, 30,  6;
  2,  6, 12, 20, 30, 42,  7;
  ...
1/1 = 1,
1/2 + 1/2 = 1,
1/2 + 1/6 + 1/3 = 1,
1/2 + 1/6 + 1/12 + 1/4 = 1, etc.
		

Crossrefs

Row sums are A006527.

Programs

Formula

Denominators of the inverse of A127949; numerators = 1. Triangle read by rows, first (n-1) terms of 1*2, 2*3, 3*4, ...; followed by "n".
T(n,k) = k*(k+1) = A002378(k) for k < n; T(n,n) = n. - Andrés Ventas, Mar 26 2021

Extensions

Gary W. Adamson submitted two different triangles numbered A127899 based on the harmonic numbers. This is the second of them, which I am renumbering as A126615. Unfortunately there were several other entries defined in terms of "A127899" and I may not have guessed which version of A127899 was being referred to. - N. J. A. Sloane, Jan 09 2007
More terms from Philippe Deléham, Dec 17 2008

A054631 Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.

Original entry on oeis.org

1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000, revised Mar 21 2007

Keywords

Comments

T(n,k) is the number of n-bead necklaces with up to k different colored beads. - Yves-Loic Martin, Sep 29 2020

Examples

			1;
1,  3;                                   (A000217)
1,  4,  11;                              (A006527)
1,  6,  24,   70;                        (A006528)
1,  8,  51,  208,   629;                 (A054620)
1, 14, 130,  700,  2635,  7826;          (A006565)
1, 20, 315, 2344, 11165, 39996, 117655;  (A054621)
		

Crossrefs

Cf. A054630, A054618, A054619, A087854. Lower triangle of A075195.

Programs

  • Maple
    A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ;  %/n ; end proc: # R. J. Mathar, Aug 30 2011
  • Mathematica
    Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
    t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
    
  • PARI
    T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021

Formula

T(n,k) = Sum_{j=1..k} binomial(k,j) * A087854(n, j). - Yves-Loic Martin, Sep 29 2020
T(n,k) = (1/n) * Sum_{j=1..n} k^gcd(j, n). - Seiichi Manyama, Mar 10 2021
Previous Showing 21-30 of 57 results. Next