cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 115 results. Next

A349293 G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^7)).

Original entry on oeis.org

1, 2, 17, 249, 4345, 83285, 1694273, 35915349, 784691569, 17545398747, 399545961817, 9234298584921, 216053290499201, 5107287712887563, 121795876378121121, 2926604574330886897, 70788399943851406825, 1722188546498276868124, 42114624858397590035177
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2021

Keywords

Comments

In general, for k>=1, Sum_{j=0..n} binomial(n + (k-1)*j,k*j) * binomial((k+1)*j,j) / (k*j+1) ~ sqrt(1 + (k-1)*r) / ((k+1)^(1/k) * sqrt(2*k*(k+1)*Pi*(1-r)) * n^(3/2) * r^(n + 1/k)), where r is the smallest real root of the equation (k+1)^(k+1) * r = k^k * (1-r)^k. - Vaclav Kotesovec, Nov 14 2021

Crossrefs

Programs

  • Mathematica
    nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^7)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 6 k, 7 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1)); \\ Michel Marcus, Nov 14 2021

Formula

a(n) = Sum_{k=0..n} binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1).
a(n) ~ sqrt(1 + 6*r) / (2^(17/7) * sqrt(7*Pi*(1-r)) * n^(3/2) * r^(n + 1/7)), where r = 0.0375502499742240443056934699070050852345109331376051496159609551... is the real root of the equation 8^8 * r = 7^7 * (1-r)^7. - Vaclav Kotesovec, Nov 14 2021
a(n) = 1 + Sum_{x_1, x_2, ..., x_8>=0 and x_1+x_2+...+x_8=n-1} Product_{k=1..8} a(x_k). - Seiichi Manyama, Jul 11 2025

A104259 Triangle T read by rows: matrix product of Pascal and Catalan triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 14, 6, 1, 51, 50, 27, 8, 1, 188, 187, 113, 44, 10, 1, 731, 730, 468, 212, 65, 12, 1, 2950, 2949, 1956, 970, 355, 90, 14, 1, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 51822, 51821, 35643, 19474, 8612, 3021, 805, 152, 18, 1
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Also, Riordan array (G,G), G(t)=(1 - ((1-5*t)/(1-t))^(1/2))/(2*t).
From Emanuele Munarini, May 18 2011: (Start)
Row sums = A002212.
Diagonal sums = A190737.
Central coefficients = A190738. (End)

Examples

			Triangle begins:
1
2, 1
5, 4, 1
15, 14, 6, 1
51, 50, 27, 8, 1
188, 187, 113, 44, 10, 1
731, 730, 468, 212, 65, 12, 1
2950, 2949, 1956, 970, 355, 90, 14, 1
12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1
Production matrix begins
2, 1
1, 2, 1
1, 1, 2, 1
1, 1, 1, 2, 1
1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 1, 2, 1
... - _Philippe Deléham_, Mar 01 2013
		

Crossrefs

Left-hand columns include A007317, A007317 - 1. Row sums are in A002212.

Programs

  • Maple
    T := (n,k) -> binomial(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4); seq(print(seq(round(evalf(T(n,k),99)),k=0..n)),n=0..8); # Peter Luschny, Sep 23 2014
    # Alternative:
    N:= 12:  # to get the first N rows
    P:= Matrix(N,N,(i,j) -> binomial(i-1,j-1), shape=triangular[lower]):
    C:= Matrix(N,N,(i,j) -> binomial(2*i-j-1,i-j)*j/i, shape=triangular[lower]):
    T:= P . C:
    for i from 1 to N do
    seq(T[i,j],j=1..i)
    od;   # Robert Israel, Sep 23 2014
  • Mathematica
    Flatten[Table[Sum[Binomial[n,i]Binomial[2i-k,i-k](k+1)/(i+1),{i,k,n}],{n,0,100},{k,0,n}]] (* Emanuele Munarini, May 18 2011 *)
  • Maxima
    create_list(sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i,k,n),n,0,12,k,0,n); /* Emanuele Munarini, May 18 2011 */

Formula

T(n,k) = sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i=k..n).
T(n+1,k+2) = T(n+1,k+1) + T(n,k+2) - T(n,k+1) - T(n,k). - Emanuele Munarini, May 18 2011
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i). - Philippe Deléham, Feb 23 2012
T(n,k) = C(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4). - Peter Luschny, Sep 23 2014

A121988 Number of vertices of the n-th multiplihedron.

Original entry on oeis.org

0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0

Views

Author

Jonathan Vos Post, Jun 24 2007

Keywords

Comments

G.f. = x*c(x)*c(x*c(x)) where c(x) is the generating function of the Catalan numbers C(n). Thus a(n) is the Catalan transform of the sequence C(n-1). Reference for the definition of Catalan transform is the paper by Paul Barry. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
A129442 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence [0, 1, 1, 2, 5, 14, 42, ...] of Catalan numbers (with 0 prepended) in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
0
1 1
1 2 2
2 4 6 6
5 9 15 21 21
14 23 38 59 80 80
...
Cf. A307495.
Alternatively, the sequence can be obtained by multiplying the sequence of Catalan numbers by the array A106566. (End)

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
          -4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
    a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
    a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */

Formula

a(0) = 0; a(n) = C(n-1) + Sum_{i=1..n-1} a(i)*a(n-i), where C(n) = A000108(n).
G.f.: (1-sqrt(2*sqrt(1-4x)-1))/2. a(n) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1,n-1)*binomial(2k-2, k-1); a(0)=0. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
a(n) = Sum_{k = 0..n} A106566(n,k)*A000108(k-1) with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
From Vaclav Kotesovec, Oct 19 2012: (Start)
D-finite with recurrence 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-3)*a(n-1) - 4*(4*n-9)*(4*n-7)*a(n-2).
a(n) ~ 2^(4*n-5/2)/(sqrt(Pi)*3^(n-1/2)*n^(3/2)). (End)
G.f.: A(x) satisfies A(x)=x*(1+A(x))/((1-A(x))*(1+A(x)^3)). - Vladimir Kruchinin, Jun 01 2014
G.f. is series reversion of (x - x^2) * (1 - x + x^2) = x - 2*x^2 + 2*x^3 - x^4. - Michael Somos, Jun 01 2014
From Peter Bala, Aug 22 2024: (Start)
G.f. A(x) = 1 - 1/c(x*c(x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Sum_{n >= 1} a(n)*y^n = x*c(x), where y = x*(1 - x). (End)

Extensions

More terms from Robert G. Wilson v, Jun 28 2007

A026106 Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).

Original entry on oeis.org

2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 12 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
Sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
Sequences (N(m): m >= 1) and (M(m): m >= 1) appear in Table 1, p. 533.
The current sequence is denoted by 1^Q_(4+n) (with n = 1,2,3,...). Thus, a(n+4) = 1^Q_(4+n) for n >= 1; i.e., a(m) = 1^Q_{m} for m >= 5. We have 1^Q_(4+n) = (1/2)*(3*N(n) + M(n)) for n >= 1. See eq. (33), p. 536.
Sequence (1^Q_(4+n): n >= 1) appears in Table II, p. 537.
We may use the many formulae in the documentations of sequences A002212 and A007317 in order to create complicated formulae and recurrence relations for (a(n): n >= 5). We omit the details.
The first g.f. below is a combination of the g.f. for sequence A002212 by John W. Layman in 2001 and the g.f. for sequence A007317 by Ira M. Gessel and Jang Soo Kim in 2010.
The second g.f. appears in eq. (A1), p. 1180, in Cyvin et al. (1994). It is algebraically equivalent to the first g.f.
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Programs

  • Maple
    bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
    taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
  • Mathematica
    (1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)

Formula

From Petros Hadjicostas, Jan 12 2019: (Start)
For n >= 1, a(n+4) = (1/2)*(3*A002212(n) + A007317(floor((n+1)/2))).
G.f.: (x^3/4)*(4 - 8*x - 3*sqrt(1 - 6*x + 5*x^2) - (x + 1)*sqrt((1 - 5*x^2)/(1 - x^2))).
G.f.: x^3*(1 - 2*x) - (x^3/4)*(3*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)) (see eq. (A1), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 12 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 12 2019

A007852 Number of antichains in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 7, 29, 131, 625, 3099, 15818, 82595, 439259, 2371632, 12967707, 71669167, 399751019, 2247488837, 12723799989, 72474333715, 415046380767, 2388355096446, 13803034008095, 80082677184820, 466263828731640, 2723428895205210, 15954063529603565, 93711351580424391
Offset: 1

Views

Author

Martin Klazar, Mar 15 1996

Keywords

Comments

Setting both offsets to zero, this is the Catalan transform of A007317. - R. J. Mathar, Jun 29 2009
a(n) is also the cumulated sizes of admissible cuts of general rooted trees of size n. - Antoine Genitrini, Mar 14 2013
a(n) is the moment of order 2*n of the sum of two position operators in the weakly monotonne Fock space - Anna Kula, May 09 2025
a(n) is the moment of order 2*n of the measure with the density defined by g(x) = 1/(4*Pi) * (sqrt(sqrt(100-16x^2)-x^2-10) - sqrt(4-x^2)) if |x|<=2, g(x) = 1/(4*Pi) * sqrt((-2x^2-2|x|sqrt(4-x^2)+20) if 2 <= |x| <= 5/2 and g(x)=0 otherwise - Anna Kula, May 09 2025

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-(1-Sqrt[1-4*x])/2-Sqrt[1-5*x-(1-Sqrt[1-4*x])/2])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 08 2014 *)
  • Maxima
    a(n):=sum(binomial(2*i+1,i)*binomial(2*n-1,n-i-1),i,0,n)/((2*n-1)); /* Vladimir Kruchinin, Jun 09 2014 */
  • PARI
    N = 33;  x = 'x + O('x^N);
    B = (1-sqrt(1-4*x))/2;
    gf = (1-B-sqrt(1-5*x-B))/2;
    v = Vec(gf)
    \\ Joerg Arndt, Mar 14 2013
    
  • Python
    def a(n):
       l = [0,1,2,7]
       if n < 4:
          return l[n]
       for i in range(n-3):
          l[i%4] = ( (-500*i+2000*i**3)*l[i%4]+(120-220*i-1380*i**2-920*i**3)*l[(i+1)%4]+(-1488-1626*i-387*i**2+21*i**3)*l[(i+2)%4]+(1088*i+1104+351*i**2+37*i**3)*l[(i+3)%4] ) // (+42*i**2+146*i+168+4*i**3)
       return l[i%4]
    # Antoine Genitrini, Mar 14 2013
    

Formula

G.f.: A(z) = (1-B(z)-sqrt(1-5*z-B(z)))/2, where B(z) = (1-sqrt(1-4*z))/2.
a(1) = 1 and for n > 1 a(n) = Sum_{j=1..n-1} (a(j)+b(j))*a(n-j), where b(n) = C(2*n-2, n-1)/n (Catalan number).
Also REVERT[A(x)] = x + 2*x^2 + x^3*(A007440(x) (Reversion of Fibonacci). - Olivier Gérard, Jul 05 2001
a(n+1) = Sum_{k=0..n} A039599(n,k) * A000108(k). - Philippe Deléham, Mar 12 2007
P-recurrence: (-500*n+2000*n^3)*a(n)+(120-220*n-1380*n^2-920*n^3)*a(n+1)+(-1488-1626*n-387*n^2+21*n^3)*a(n+2)+(1088*n+1104+351*n^2+37*n^3)*a(n+3)+(-42*n^2-146*n-168-4*n^3)*a(n+4); a(0)=0; a(1)=1; a(2)=2; a(3)=7. - Antoine Genitrini, Mar 14 2013
a(n) ~ (25/4)^n / (sqrt(15*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2014
a(n) = (Sum_{i=0..n} binomial(2*i+1,i)*binomial(2*n-1,n-i-1))/(2*n-1). - Vladimir Kruchinin, Jun 09 2014
1 + 1/z*A(z)^2 = 1 + z + 4*z^2 + 18*z^3 + 86*z^4 + ... is the o.g.f. for A153294. - Peter Bala, Jul 21 2015

Extensions

More terms and formulas from Frank Ruskey, Nov 15 1997

A124644 Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Comments

Equal to A091867*A007318. - Philippe Deléham, Dec 12 2009
Exponential Riordan array [exp(2x)*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = C[Pinv(x,t)] = {1 - sqrt[1 - 4 *x /(1-x*t)]}/2 where C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108 with inverse Cinv(x) = x*(1-x), and Pinv(x,t)= -P(-x,t) = x/(1-t*x) with inverse P(x,t) = 1/(1+t*x). This puts this array in a family of arrays formed from the composition of C and P and their inverses. -G(-x,t) is the comp. inverse of the o.g.f. of A030528.
This is an Appell sequence with lowering operator d/dt p(n,t) = n*p(n-1,t) and (p(.,t)+a)^n = p(n,t+a). The e.g.f. has the form e^(x*t)/w(t) where 1/w(t) is the e.g.f. of the first column, which is the Catalan sequence A000108. (End)

Examples

			From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
   1,
   1,  1,
   2,  2,  1,
   5,  6,  3,  1,
  14, 20, 12,  4,  1,
  42, 70, 50, 20,  5,  1 (End)
		

Crossrefs

Cf. A098474 (mirror image), A000108, A091867, A030528, A104597.
Row sums give A007317(n+1).

Programs

  • Maple
    m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
  • Mathematica
    Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Sage
    def A124644(n,k):
        return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
    for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015

Formula

T(n,k) = [x^(n-k)]F(-n,n-k+1;1;-1-x). - Paul Barry, Sep 05 2008
G.f.: 1/(1-xy-x/(1-x/(1-xy-x/(1-x/(1-xy-x/(1-x.... (continued fraction). - Paul Barry, Jan 06 2009
G.f.: 1/(1-x-xy-x^2/(1-2x-xy-x^2/(1-2x-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
T(n,k) = Sum_{i = 0..n} C(n,i)*(-1)^(n-i)*Sum{j = 0..i} C(j,k)*C(i,j)*A000108(i-j). - Paul Barry, Aug 03 2009
Sum_{k = 0..n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. T(n,k)= A007318(n,k)*A000108(n-k). - Philippe Deléham, Dec 12 2009
E.g.f.: exp(2*x + x*y)*(Bessel_I(0,2*x) - Bessel_I(1,2*x)). - Paul Barry, Mar 10 2010
From Tom Copeland, Nov 08 2014: (Start)
O.g.f.: G(x,t) = C[P(x,t)] = [1 - sqrt(1-4*x / (1-t*x))] / 2 = Sum_{n >= 1} (C. + t)^(n-1) * x^n] = x + (1 + t) x^2 + (2 + 2t + t^2) x^3 + ... umbrally, where (C.)^n = C_n = (1,1,2,5,8,...) = A000108(x), C(x)= x*A000108(x)= G(x,0), and P(x,t) = x/(1 + t*x), a special linear fractional (Mobius) transformation. P(x,-t)= -P(-x,t) is the inverse of P(x,t).
Inverse o.g.f.: Ginv(x,t) = P[Cinv(x),-t] = x*(1-x) / [1 - t*x(1-x)] = -A030528(-x,t), where Cinv(x) = x*(1-x) is the inverse of C(x).
G(x,t) = x*A091867(x,t+1), and Ginv(x,t) = x*A104597(x,-(t+1)). (End)
T(n, k) = (-1)^(n-k)*Catalan(n-k)*Pochhammer(-n,n-k)/(n-k)!. - Peter Luschny, Feb 05 2015
Recurrence: T(n, 0) = Catalan(n) = 1/(n+1)*binomial(2*n, n) and, for 1 <= k <= n, T(n, k) = (n/k) * T(n-1, k-1). - Peter Bala, Feb 04 2024

Extensions

Name brought in line with the Maple program by Peter Luschny, Jun 21 2023

A300866 Signed recurrence over binary strict trees: a(n) = 1 - Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, -1, 1, 1, -2, 3, -1, -3, 8, -8, 1, 14, -26, 22, 10, -59, 90, -52, -74, 238, -291, 80, 417, -930, 915, 124, -1991, 3483, -2533, -2148, 9011, -12596, 5754, 14350, -37975, 42735, -4046, -77924, 154374, -133903, -56529, 376844, -591197, 355941, 522978, -1706239
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[a[k]*a[n-k],{k,1,(n-1)/2}];
    Array[a,40]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 - sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 27 2018

A337167 a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Binomial transform of A005159.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
    Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
  • PARI
    {a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + 3*x*A(x)^2.
G.f.: (1 - sqrt(1 - 12*x / (1 - x))) / (6*x).
E.g.f.: exp(7*x) * (BesselI(0,6*x) - BesselI(1,6*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Catalan(k).
a(n) = 2F1([1/2, -n], [2], -12), where 2F1 is the hypergeometric function.
D-finite with recurrence (n+1) * a(n) = 2 * (7*n-3) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1. - Seiichi Manyama, Jan 31 2021
a(n) ~ 13^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 14 2021

A039658 Related to enumeration of edge-rooted catafusenes.

Original entry on oeis.org

0, 1, 2, 5, 8, 18, 28, 64, 100, 237, 374, 917, 1460, 3679, 5898, 15183, 24468, 64055, 103642, 275011, 446380, 1197616, 1948852, 5277070, 8605288, 23483743, 38362198, 105392983, 172423768, 476459938, 780496108, 2167743688, 3554991268
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jan 13 2019: (Start)
This sequence appears in Table I, p. 533, in Cyvin et al. (1992) and Table I, p. 1174, in Cyvin et al. (1994).
In Cyvin et al. (1992), it is defined through eq. (22), p. 535. We have a(n) = Sum_{i=1..n-1} M(i)*M(n-i), where M(2*n) = M(2*n-1) = A007317(n) for n >= 1.
In Cyvin et al. (1992), it is used in the calculation of sequence A026118. See eq. (34), p. 536, in Cyvin et al. (1992).
(The word "annelated" in the title of Cyvin et al. (1994) is spelled "annealated" in the text of Cyvin et al. (1992).)
(End)

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1+x) (1-3x^2-Sqrt[1-6x^2+5x^4])/(2x^2 (1-x)),{x,0,40}],x]] (* Harvey P. Dale, Oct 30 2016 *)

Formula

G.f.: (1+x)*(1 - 3*x^2 - sqrt(1 - 6*x^2 + 5*x^4))/(2*x^2*(1-x)) (eq. (9), p. 1175, in Cyvin et al. (1994)).
For n >= 1, a(n) = Sum_{i=1..n-1} A007317(floor((i+1)/2)) * A007317(floor((n-i+1)/2)). - Petros Hadjicostas, Jan 13 2019

Extensions

More terms from Emeric Deutsch, Mar 14 2004

A039919 Related to enumeration of edge-rooted catafusenes.

Original entry on oeis.org

0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of the first differences of the Catalan numbers (see A000245). - Paul Barry, Feb 16 2006
Starting (1, 5, 21, ...) = A002212, (1, 3, 10, 36, 137, ...) convolved with A007317, (1, 2, 5, 15, 51, ...). - Gary W. Adamson, May 19 2009
From Petros Hadjicostas, Jan 15 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
In the same reference, sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
In the same reference, the sequence (M'(m): m >= 3) is defined by eq. (26), p. 535; see also Cyvin et al. (1994, Monatshefte fur Chemie), eq. 5, p. 1329. We have M'(m) = Sum_{1 <= i <= floor((m-1)/2)} N(i)*M(m-2*i) for m >= 3.
It turns out that M'(m) = a(floor((m + 1)/2)) for m >= 3, where (a(n): n >= 1) is the current sequence.
If 1 + U(x) = Sum_{n >= 0} N(n)*x^n = Sum_{n >= 0} A002212(n)*x^n, then the g.f. of the sequence (M(m): m >= 1) is V(x) = x*(1-x)^(-1)*(1 + U(x^2)). See eqs. 3 and 4, p. 1329, in Cyvin et al. (1994, Monatshefte fur Chemie).
Eq. 6 in the latter reference (pp. 1329-1330) states that the g.f. of the sequence (M'(m): m >= 3) is U(x^2)*V(x) = U(x^2)*x*(1-x)^(-1)*(1 + U(x^2)).
Since M'(m) = a(floor((m + 1)/2)) for m >= 3, the latter g.f. also equals (1 + x)*A(x^2)/x, where A(x) = Sum_{n >= 1} a(n)*x^n is the g.f. of the current sequence (given below by Emeric Deutsch).
Equating the two forms of the g.f. of the (M'(m): m >= 3), we get that A(x) = x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (with U(0) = 0).
The sequence (M'(m): m >= 3) = (a(floor((m + 1)/2)): m >= 3) is used in the calculation of A026298 (= numbers of polyhexes of the class PF2 with three catafusenes annelated to pyrene).
(End)

Crossrefs

Cf. A007317. - Gary W. Adamson, May 19 2009

Programs

  • Mathematica
    Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: 8*x^2*(1-x)/(1 - x + sqrt(1 - 6*x + 5*x^2))^3. - Emeric Deutsch, Oct 24 2002
a(n) = A002212(n) - Sum_{j=0..n-1} A002212(j). Example: a(5) = 137 - (1 + 1 + 3 + 10 + 36) = 86. - Emeric Deutsch, Jan 23 2004
a(n+1) = Sum_{k=0..n} C(n,k)*(C(k+1) - C(k)) for n >= 0, where C(k) = A000108(k). - Paul Barry, Feb 16 2006 [edited by Petros Hadjicostas, Jan 18 2019]
Recurrence: (n-2)*(n+1)*a(n) = 2*(n-1)*(3*n-4)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3*5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (using the notation in the two papers by Cyvin et al. published in 1994).

Extensions

More terms from Emeric Deutsch, Oct 24 2002
Previous Showing 31-40 of 115 results. Next