A349293
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^7)).
Original entry on oeis.org
1, 2, 17, 249, 4345, 83285, 1694273, 35915349, 784691569, 17545398747, 399545961817, 9234298584921, 216053290499201, 5107287712887563, 121795876378121121, 2926604574330886897, 70788399943851406825, 1722188546498276868124, 42114624858397590035177
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^7)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 6 k, 7 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
-
a(n) = sum(k=0, n, binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1)); \\ Michel Marcus, Nov 14 2021
A104259
Triangle T read by rows: matrix product of Pascal and Catalan triangle.
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 15, 14, 6, 1, 51, 50, 27, 8, 1, 188, 187, 113, 44, 10, 1, 731, 730, 468, 212, 65, 12, 1, 2950, 2949, 1956, 970, 355, 90, 14, 1, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 51822, 51821, 35643, 19474, 8612, 3021, 805, 152, 18, 1
Offset: 0
Triangle begins:
1
2, 1
5, 4, 1
15, 14, 6, 1
51, 50, 27, 8, 1
188, 187, 113, 44, 10, 1
731, 730, 468, 212, 65, 12, 1
2950, 2949, 1956, 970, 355, 90, 14, 1
12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1
Production matrix begins
2, 1
1, 2, 1
1, 1, 2, 1
1, 1, 1, 2, 1
1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 1, 2, 1
... - _Philippe Deléham_, Mar 01 2013
- Robert Israel, Table of n, a(n) for n = 0..5049
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Mathematics and Computer Science, Part of the series Trends in Mathematics pp 127-139, 2000. [alternative link]
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Colloquium on Mathematics and Computer Science, Versailles, September 2000.
-
T := (n,k) -> binomial(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4); seq(print(seq(round(evalf(T(n,k),99)),k=0..n)),n=0..8); # Peter Luschny, Sep 23 2014
# Alternative:
N:= 12: # to get the first N rows
P:= Matrix(N,N,(i,j) -> binomial(i-1,j-1), shape=triangular[lower]):
C:= Matrix(N,N,(i,j) -> binomial(2*i-j-1,i-j)*j/i, shape=triangular[lower]):
T:= P . C:
for i from 1 to N do
seq(T[i,j],j=1..i)
od; # Robert Israel, Sep 23 2014
-
Flatten[Table[Sum[Binomial[n,i]Binomial[2i-k,i-k](k+1)/(i+1),{i,k,n}],{n,0,100},{k,0,n}]] (* Emanuele Munarini, May 18 2011 *)
-
create_list(sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i,k,n),n,0,12,k,0,n); /* Emanuele Munarini, May 18 2011 */
A121988
Number of vertices of the n-th multiplihedron.
Original entry on oeis.org
0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0
G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004. See p. 19.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5, pp. 1-24.
- David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996 [math.CO], 2011.
- Stefan Forcey, Convex Hull Realizations of the Multiplihedra, Theorem 3.2, p. 8, arXiv:0706.3226 [math.AT], 2007-2008.
- Stefan Forcey, Aaron Lauve, and Frank Sottile, New Hopf Structures on Binary Trees, dmtcs:2740 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009).
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Tian-Xiao He and Louis W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77-95.
-
a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
-4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 20 2012
-
a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
-
{a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */
A026106
Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).
Original entry on oeis.org
2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Eric Weisstein's World of Mathematics, Fusenes.
- Eric Weisstein's World of Mathematics, Polyhex.
Cf.
A002212,
A007317,
A026106,
A026118,
A026298,
A030519,
A030520,
A030525,
A030529,
A030532,
A030534,
A039658.
-
bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
-
(1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)
A007852
Number of antichains in rooted plane trees on n nodes.
Original entry on oeis.org
1, 2, 7, 29, 131, 625, 3099, 15818, 82595, 439259, 2371632, 12967707, 71669167, 399751019, 2247488837, 12723799989, 72474333715, 415046380767, 2388355096446, 13803034008095, 80082677184820, 466263828731640, 2723428895205210, 15954063529603565, 93711351580424391
Offset: 1
- O. Bodini, A. Genitrini and F. Peschanski, Enumeration and Random Generation of Concurrent Computations In proc. 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Discrete Mathematics and Theoretical Computer Science, pp 83-96, 2012.
- O. Bodini, A. Genitrini and F. Peschanski, A Quantitative Study of Pure Parallel Processes, Preprint, 2013.
- O. Bodini, A. Genitrini, and F. Peschanski, A Quantitative Study of Pure Parallel Processes, arXiv preprint arXiv:1407.1873 [cs.PL], 2014.
- G.-S. Cheon, H. Kim, and L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.
- V. Crismale, M. E. Griseta, and J. Wysoczański, Weakly Monotone Fock Space and Monotone Convolution of the Wigner Law, J Theor Probab 33, 268-294,2020.
- Martin Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- Frank Ruskey, Listing and Counting Subtrees of a Tree, SIAM J. Computing, 10 (1981) 141-150.
- Index entries for sequences related to rooted trees
- Index entries for reversions of series
-
Rest[CoefficientList[Series[(1-(1-Sqrt[1-4*x])/2-Sqrt[1-5*x-(1-Sqrt[1-4*x])/2])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 08 2014 *)
-
a(n):=sum(binomial(2*i+1,i)*binomial(2*n-1,n-i-1),i,0,n)/((2*n-1)); /* Vladimir Kruchinin, Jun 09 2014 */
-
N = 33; x = 'x + O('x^N);
B = (1-sqrt(1-4*x))/2;
gf = (1-B-sqrt(1-5*x-B))/2;
v = Vec(gf)
\\ Joerg Arndt, Mar 14 2013
-
def a(n):
l = [0,1,2,7]
if n < 4:
return l[n]
for i in range(n-3):
l[i%4] = ( (-500*i+2000*i**3)*l[i%4]+(120-220*i-1380*i**2-920*i**3)*l[(i+1)%4]+(-1488-1626*i-387*i**2+21*i**3)*l[(i+2)%4]+(1088*i+1104+351*i**2+37*i**3)*l[(i+3)%4] ) // (+42*i**2+146*i+168+4*i**3)
return l[i%4]
# Antoine Genitrini, Mar 14 2013
A124644
Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0
Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006
From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
1,
1, 1,
2, 2, 1,
5, 6, 3, 1,
14, 20, 12, 4, 1,
42, 70, 50, 20, 5, 1 (End)
-
m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
-
Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
-
def A124644(n,k):
return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015
Name brought in line with the Maple program by
Peter Luschny, Jun 21 2023
A300866
Signed recurrence over binary strict trees: a(n) = 1 - Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).
Original entry on oeis.org
1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, -1, 1, 1, -2, 3, -1, -3, 8, -8, 1, 14, -26, 22, 10, -59, 90, -52, -74, 238, -291, 80, 417, -930, 915, 124, -1991, 3483, -2533, -2148, 9011, -12596, 5754, 14350, -37975, 42735, -4046, -77924, 154374, -133903, -56529, 376844, -591197, 355941, 522978, -1706239
Offset: 0
Cf.
A000992,
A001190,
A007317,
A063834,
A099323,
A196545,
A220418,
A273866,
A273873,
A289501,
A290261,
A300442,
A300443,
A300862,
A300863,
A300864,
A300865.
-
a[n_]:=a[n]=1-Sum[a[k]*a[n-k],{k,1,(n-1)/2}];
Array[a,40]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 - sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 27 2018
A337167
a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).
Original entry on oeis.org
1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0
-
a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
-
{a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
-
my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021
A039658
Related to enumeration of edge-rooted catafusenes.
Original entry on oeis.org
0, 1, 2, 5, 8, 18, 28, 64, 100, 237, 374, 917, 1460, 3679, 5898, 15183, 24468, 64055, 103642, 275011, 446380, 1197616, 1948852, 5277070, 8605288, 23483743, 38362198, 105392983, 172423768, 476459938, 780496108, 2167743688, 3554991268
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Eric Weisstein's World of Mathematics, Fusenes.
- Eric Weisstein's World of Mathematics, Polyhex.
-
Rest[CoefficientList[Series[(1+x) (1-3x^2-Sqrt[1-6x^2+5x^4])/(2x^2 (1-x)),{x,0,40}],x]] (* Harvey P. Dale, Oct 30 2016 *)
A039919
Related to enumeration of edge-rooted catafusenes.
Original entry on oeis.org
0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- B. N. Cyvin, E. Brendsdal, J. Brunvoll, and S. J. Cyvin, A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see Eq. 6 for the g.f. of the sequence (M'(n): n >= 3) = (a(floor((m + 1)/2)): m >= 3)).
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
-
Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
x='x+O('x^66); concat([0],Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013
Comments