cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 107 results. Next

A065958 a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2).

Original entry on oeis.org

1, 5, 10, 20, 26, 50, 50, 80, 90, 130, 122, 200, 170, 250, 260, 320, 290, 450, 362, 520, 500, 610, 530, 800, 650, 850, 810, 1000, 842, 1300, 962, 1280, 1220, 1450, 1300, 1800, 1370, 1810, 1700, 2080, 1682, 2500, 1850, 2440, 2340, 2650, 2210
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Comments

The sequence may be considered as psi_2, a generalization of Dedekind psi function, where psi_1 is A001615. - Enrique Pérez Herrero, Jul 06 2011

References

  • József Sándor, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, American Research Press, Rehoboth 2002, pp. 193.

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), this sequence (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Maple
    A065958 := proc(n) local i,j,k,t1,t2,t3; t1 := ifactors(n)[2]; t2 := n^2*mul((1+1/(t1[i][1])^2),i=1..nops(t1)); end;
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A065958[n_]:=JordanTotient[n,4]/JordanTotient[n,2]; (* Enrique Pérez Herrero, Aug 22 2010 *)
    f[p_, e_] := p^(2*e) + p^(2*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n*sumdiv(n,d,moebius(d)^2/d^2),","))
    
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)^2*d^2); /* Joerg Arndt, Jul 06 2011 */

Formula

Multiplicative with a(p^e) = p^(2*e) + p^(2*e-2). - Vladeta Jovovic, Dec 09 2001
a(n) = n^2 * Sum_{d|n} mu(d)^2/d^2 - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(d)^2*d^2. - Joerg Arndt, Jul 06 2011
Inverse Euler transform of n*A156733(n). - Paul D. Hanna and Vladeta Jovovic, Feb 14 2009
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_4(n)/(phi(n)*psi(n)) = A059377(n)/(A001615(n)*A000010(n))
a(n) = J_4(n)/J_2(n) = A059377(n)/A007434(n), where J_k is the k-th Jordan totient function. (End)
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s). Dirichlet convolution of A008966 and A000290. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/(p^4 - 1)) = 1.5421162831401587416523241690601522041445615542162573163112157073779258386... - Vaclav Kotesovec, Sep 19 2020
a(n) = Sum_{d|n} d*phi(d)*psi(n/d). - Ridouane Oudra, Jan 01 2021
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} psi(gcd(n,k))*n/gcd(n,k), where psi(n) = A001615(n).
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 315*zeta(3)/Pi^6 = 0.393854... . - Amiram Eldar, Oct 19 2022

A065959 a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).

Original entry on oeis.org

1, 9, 28, 72, 126, 252, 344, 576, 756, 1134, 1332, 2016, 2198, 3096, 3528, 4608, 4914, 6804, 6860, 9072, 9632, 11988, 12168, 16128, 15750, 19782, 20412, 24768, 24390, 31752, 29792, 36864, 37296, 44226, 43344, 54432, 50654, 61740, 61544
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), this sequence (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &]/;(n>0) && IntegerQ[n]; A065959[n_] := JordanTotient[n,6] / JordanTotient[n,3]; Array[A065959, 39] (* Enrique Pérez Herrero, Aug 22 2010 *)
    f[p_, e_] := p^(3*e) + p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^3*sumdiv(n,d,moebius(d)^2/d^3),","))
    
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)^2*d^3); \\ Joerg Arndt, Jul 06 2011

Formula

Multiplicative with a(p^e) = p^(3*e)+p^(3*e-3). - Vladeta Jovovic, Dec 09 2001
a(n) = n^3*Sum_{d|n} mu(d)^2/d^3. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2*d^3. - Joerg Arndt, Jul 06 2011
a(n) = J_6(n)/J_3(n) = A069091(n)/A059376(n). - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2*s). Dirichlet convolution of A008966 and A000578. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 105*n^4 / (4*Pi^4).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(p^6-1)) = 1.18370753651668075930203278269930233284040397061087910806697928843547863257... (End)

A069091 Jordan function J_6(n).

Original entry on oeis.org

1, 63, 728, 4032, 15624, 45864, 117648, 258048, 530712, 984312, 1771560, 2935296, 4826808, 7411824, 11374272, 16515072, 24137568, 33434856, 47045880, 62995968, 85647744, 111608280, 148035888, 187858944, 244125000, 304088904, 386889048
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Moebius transform of n^6. - Enrique Pérez Herrero, Sep 14 2010
a(n) is divisible by 504 = (2^3)*(3^3)*7 = A006863(3) except for n = 1, 2, 3 and 7. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069092 - A069095 (J_7 through J_10).
Cf. A065959.
Cf. A013665.

Programs

  • Maple
    with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]
    A069091[n_IntegerQ]:=JordanTotient[n,6]; (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^6*moebius(n/d)),","))

Formula

a(n) = Sum_{d|n} d^6*mu(n/d).
Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)).
Dirichlet generating function: zeta(s-6)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^7 / (7*zeta(7)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^6 = 1/zeta(7).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^6/(p^6-1)^2) = 1.0175973008... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A(x^n)/(1 - x^n)^7 = x + 63*x^2 + 728*x^3 + 4032*x^4 + 15624*x^5 + ..., where A(x) = x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6 is the 6th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.

Original entry on oeis.org

1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2017

Keywords

Comments

This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- in particular, x_A000027 = A256739 and x_A000290 = a (this sequence),
- also, x_A178910 = A000027 and x_A055895 = A000079,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- A000004 is the only fixed point of x (i.e. x_f = f if and only if f = A000004),
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)

Crossrefs

Programs

  • PARI
    a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)

Formula

a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.

A065960 a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).

Original entry on oeis.org

1, 17, 82, 272, 626, 1394, 2402, 4352, 6642, 10642, 14642, 22304, 28562, 40834, 51332, 69632, 83522, 112914, 130322, 170272, 196964, 248914, 279842, 356864, 391250, 485554, 538002, 653344, 707282, 872644, 923522, 1114112, 1200644
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), this sequence (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Maple
    A065960 := proc(n) n^4*mul(1+1/p^4,p=numtheory[factorset](n)) ; end proc:
    seq(A065960(n),n=1..20) ; # R. J. Mathar, Jun 06 2011
  • Mathematica
    a[n_] := n^4*DivisorSum[n, MoebiusMu[#]^2/#^4&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := p^(4*e) + p^(4*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^4*sumdiv(n,d,moebius(d)^2/d^4),","))

Formula

Multiplicative with a(p^e) = p^(4*e)+p^(4*e-4). - Vladeta Jovovic, Dec 09 2001
a(n) = n^4 * Sum_{d|n} mu(d)^2/d^4. - Benoit Cloitre, Apr 07 2002
a(n) = J_8(n)/J_4(n) = A069093(n)/A059377(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 29 2010
Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s). - R. J. Mathar, Jun 06 2011
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 18711*zeta(5)*n^5 / Pi^10.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^4/(p^8-1)) = 1.078178802583045599985995264729541574821218371712364313741065126120993131... (End)

A083342 Decimal expansion of average deviation of the total number of prime factors.

Original entry on oeis.org

1, 0, 3, 4, 6, 5, 3, 8, 8, 1, 8, 9, 7, 4, 3, 7, 9, 1, 1, 6, 1, 9, 7, 9, 4, 2, 9, 8, 4, 6, 4, 6, 3, 8, 2, 5, 4, 6, 7, 0, 3, 0, 7, 9, 8, 4, 3, 4, 4, 3, 8, 5, 2, 5, 4, 5, 0, 3, 0, 7, 0, 2, 8, 1, 2, 8, 1, 6, 3, 3, 5, 3, 9, 3, 8, 6, 6, 0, 1, 6, 0, 7, 5, 4, 7, 9, 4, 1, 3, 9, 0, 2, 5, 7, 5, 6, 7, 4, 6, 9, 3, 8
Offset: 1

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Comments

Or, decimal expansion of constant B2 from the summatory function of the restricted divisor function.
The constant A in the asymptotic formula Sum_{prime p <= n} 1/(p-1) = log(log(n)) + A + O(1/log(n)) (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Examples

			1.03465388189743791161979429846463825467030798434438525450307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.
  • József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, p. 155, Chapter V, 1) b).

Crossrefs

Programs

  • Mathematica
    digits = 102; Mp = EulerGamma - NSum[PrimeZetaP[n]/n - PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[Mp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)

Formula

Equals A077761 + A136141. - Jean-François Alcover, Sep 02 2015
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/(p-1)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
From Amiram Eldar, Mar 18 2024: (Start)
Equals gamma + Sum_{k>=2} phi(k) * log(zeta(k)) / k, where phi = A000010.
Equals gamma - Sum_{p prime} 1/(p-1)^2 + Sum_{k>=2} J_2(k) * log(zeta(k)) / k, where J_2 = A007434.
Both formulas are from Jakimczuk (2017). (End)

A129194 a(n) = (n/2)^2*(3 - (-1)^n).

Original entry on oeis.org

0, 1, 2, 9, 8, 25, 18, 49, 32, 81, 50, 121, 72, 169, 98, 225, 128, 289, 162, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 450, 961, 512, 1089, 578, 1225, 648, 1369, 722, 1521, 800, 1681, 882, 1849, 968, 2025, 1058, 2209, 1152, 2401, 1250, 2601, 1352
Offset: 0

Views

Author

Paul Barry, Apr 02 2007

Keywords

Comments

The numerator of the integral is 2,1,2,1,2,1,...; the moments of the integral are 2/(n+1)^2. See 2nd formula.
The sequence alternates between twice a square and an odd square, A001105(n) and A016754(n).
Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011
Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013
Conjecture: denominator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016
Multiplicative because both A000290 and A040001 are. - Andrew Howroyd, Jul 25 2018

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73.

Crossrefs

Programs

Formula

G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3.
a(n+1) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*n*t)(-((Pi-t)/i)^2)), i=sqrt(-1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. - Paul Curtz, Mar 07 2011
a(n) is the numerator of the coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011
O.g.f. as a Lambert series: x*Sum_{n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Pólya and Szegő. - Peter Bala, Dec 28 2013
From Ilya Gutkovskiy, Jul 11 2016: (Start)
E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/24. [corrected by Amiram Eldar, Sep 11 2022] (End)
a(n) = A000290(n) / A040001(n). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Sep 11 2022
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} (-1)^(1 + gcd(i,j,n)) = Sum_{d | n} (-1)^(d+1) * J_2(n/d), that is, the Dirichlet convolution of the pair of multiplicative functions f(n) = (-1)^(n+1) and the Jordan totient function J_2(n) = A007434(n). Hence this sequence is multiplicative. Cf. A193356 and A309337.
Dirichlet g.f.: (1 - 2/2^s)*zeta(s-2). (End)
a(n) = Sum_{1 <= i, j <= n} (-1)^(n + gcd(i, n)*gcd(j, n)) = Sum_{d|n, e|n} (-1)^(n+e*d) * phi(n/d)*phi(n/e). - Peter Bala, Jan 22 2024

Extensions

More terms from Michel Marcus, Dec 28 2013

A181318 a(n) = A060819(n)^2.

Original entry on oeis.org

0, 1, 1, 9, 1, 25, 9, 49, 4, 81, 25, 121, 9, 169, 49, 225, 16, 289, 81, 361, 25, 441, 121, 529, 36, 625, 169, 729, 49, 841, 225, 961, 64, 1089, 289, 1225, 81, 1369, 361, 1521, 100, 1681, 441, 1849, 121, 2025, 529, 2209, 144, 2401, 625, 2601, 169, 2809, 729
Offset: 0

Views

Author

Paul Curtz, Jan 26 2011

Keywords

Comments

The first sequence, p=0, of the family A060819(n)*A060819(n+p).
Hence array
p=0: 0, 1, 1, 9, 1, 25, 9, 49, a(n)=A060819(n)^2,
p=1: 0, 1, 3, 3, 5, 15, 21, 14, A064038(n),
p=2: 0, 3, 1, 15, 3, 35, 6, 63, A198148(n),
p=3: 0, 1, 5, 9, 7, 10, 27, 35, A160050(n),
p=4: 0, 5, 3, 21, 2, 45, 15, 77, A061037(n),
p=5: 0, 3, 7, 6, 9, 25, 33, 21, A178242(n),
p=6: 0, 7, 2, 27, 5, 55, 9, 91, A217366(n),
p=7: 0, 2, 9, 15, 11, 15, 39, 49, A217367(n),
p=8: 0, 9, 5, 33, 3, 65, 21, 105, A180082(n).
Compare columns 2, 3 and 5, columns 4 and 7 and columns 6 and 8.
From Peter Bala, Feb 19 2019: (Start)
We make some general remarks about the sequence a(n) = numerator(n^2/(n^2 + k^2)) = (n/gcd(n,k))^2 for k a fixed positive integer (we suppress the dependence of a(n) on k). The present sequence corresponds to the case k = 4.
a(n) is a quasi-polynomial in n. In fact, a(n) = n^2/b(n) where b(n) = gcd(n^2,k^2) is a purely periodic sequence in n.
In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m).
By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*F(x^d), where F(x) = x*(1 + x)/(1 - x)^3 = x + 4*x^2 + 9*x^3 + 16*x^4 + ... is the o.g.f. for the squares A000290, and where f(n) is the Dirichlet inverse of the Jordan totient function J_2(n) - see A007434. The function f(n) is multiplicative and is defined on prime powers p^k by f(p^k) = (1 - p^2). See A046970. Cf. A060819. (End)
a(n-4) is the constant needed to complete the n-polygonal numbers into squares (see A377851); a(-1) = 1, which completes the triangle numbers, is not shown in the data. - Jonathan Dushoff, Nov 12 2024

Crossrefs

Programs

  • Magma
    [n^2/GCD(n,4)^2: n in [0..100]]; // G. C. Greubel, Sep 19 2018
    
  • Maple
    a:=n->n^2/gcd(n,4)^2: seq(a(n),n=0..60); # Muniru A Asiru, Feb 20 2019
  • Mathematica
    Table[n^2/GCD[n,4]^2, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,1,1,9,1,25,9,49,4,81,25,121},60] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n)=n^2/gcd(n,4)^2 \\ Charles R Greathouse IV, Dec 21 2011
    
  • Sage
    [n^2/gcd(n, 4)^2 for n in (0..100)] # G. C. Greubel, Feb 20 2019

Formula

a(2*n) = A168077(n), a(2*n+1) = A016754(n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(1 + x + 9*x^2 + x^3 + 22*x^4 + 6*x^5 + 22*x^6 + x^7 + 9*x^8 + x^9 + x^10)/(1-x^4)^3. - R. J. Mathar, Mar 10 2011
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 16)) = n^2/(gcd(n^2,16)) = (n/gcd(n,4))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 16, 1, 4, 1, 16, ...] is a purely periodic sequence of period 4.
a(n) is a quasi-polynomial in n: a(4*n) = n^2; a(4*n + 1) = (4*n + 1)^2; a(4*n + 2) = (2*n + 1)^2; a(4*n + 3) = (4*n + 3)^2.
O.g.f.: Sum_{d divides 4} A046970(d)*x^d*(1 + x^d)/(1 - x^d)^3 = x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3 - 3*x^4*(1 + x^4)/(1 - x^4)^3. (End)
Sum_{n>=1} 1/a(n) = 5*Pi^2/12. - Amiram Eldar, Aug 12 2022
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 4^max(0, e-2), and a(p^e) = p^(2*e) for p > 2.
Dirichlet g.f.: zeta(s-2)*(1 - 3/2^s - 3/4^s).
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)
a(n) = (37 - 27*(-1)^n - 3*(-1)^(n*(n-1)/2) - 3*(-1)^(n*(n+1)/2)) * n^2/64. - Vaclav Kotesovec, Nov 14 2024

Extensions

Edited by Jean-François Alcover, Oct 01 2012 and Jan 15 2013
More terms from Michel Marcus, Jun 09 2014

A069095 Jordan function J_10(n).

Original entry on oeis.org

1, 1023, 59048, 1047552, 9765624, 60406104, 282475248, 1072693248, 3486725352, 9990233352, 25937424600, 61855850496, 137858491848, 288972178704, 576640565952, 1098437885952, 2015993900448, 3566920035096, 6131066257800
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

a(n) is divisible by 264 = (2^3)*3*11 = A006863(5), except for n = 1, 2, 3 or 11. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J-2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069094 (J_6 through J_9).
Cf. A013669.

Programs

  • Maple
    f:= n -> n^10*mul(1-1/p^10, p=numtheory:-factorset(n)):
    map(f, [$1..30]); # Robert Israel, Jan 09 2015
  • Mathematica
    JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 10]; Array[f, 21]
    f[p_, e_] := p^(10*e) - p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = sumdiv(n,d,d^10*moebius(n/d));

Formula

a(n) = Sum_{d|n} d^10*mu(n/d).
Multiplicative with a(p^e) = p^(10e)-p^(10(e-1)).
Dirichlet generating function: zeta(s-10)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^10*Product_{distinct primes p dividing n} (1-1/p^10). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^11 / (11*zeta(11)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^10 = 1/zeta(11).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^10/(p^10-1)^2) = 1.0009955309... (End)

A084218 a(n) = sigma_4(n^2)/sigma_2(n^2).

Original entry on oeis.org

1, 13, 73, 205, 601, 949, 2353, 3277, 5905, 7813, 14521, 14965, 28393, 30589, 43873, 52429, 83233, 76765, 129961, 123205, 171769, 188773, 279313, 239221, 375601, 369109, 478297, 482365, 706441, 570349, 922561, 838861, 1060033, 1082029
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[4](n^2)/sigma[2](n^2): seq(a(n),n=1..40); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[4, n^2]/DivisorSigma[2, n^2], {n, 1, 50}] (* G. C. Greubel, Oct 08 2018 *)
    f[p_, e_] := (p^(4*e + 2) + 1)/(p^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^4)/sumdiv(n^2,d,d^2)
    
  • PARI
    a(n) = sigma(n^2, 4)/sigma(n^2, 2); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(4*e + 2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.09957644430375183822287768590764825667080036406680891521221069625517483696... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(3)) = 0.172525... . - Amiram Eldar, Oct 30 2022
From Peter Bala, Jan 18 2024: (Start)
a(n) = Sum_{d divides n} J_2(d^2) = Sum_{d divides n} d^2 * J_2(d), where the Jordan totient function J_2(n) = A007434(n).
a(n) = Sum_{1 <= j, k <= n} ( n/gcd(j, k, n) )^2.
Dirichlet g.f.: zeta(s) * zeta(s-4) / zeta(s-2) [Corrected by Michael Shamos, May 18 2025]. (End)
a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_4(d). - Seiichi Manyama, May 18 2024
Previous Showing 31-40 of 107 results. Next