cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 134 results. Next

A157398 A partition product of Stirling_2 type [parameter k = -4] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 4, 1, 12, 28, 1, 72, 112, 280, 1, 280, 1400, 1400, 3640, 1, 1740, 15120, 21000, 21840, 58240, 1, 8484, 126420, 401800, 382200, 407680, 1106560, 1, 57232, 1538208, 6370000, 8357440, 8153600, 8852480, 24344320, 1
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134149.
Same partition product with length statistic is A035469.
Diagonal a(A000217) = A007559.
Row sum is A049119.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-3*j - 1).

A051605 a(n) = (3*n+5)!!!/5!!!.

Original entry on oeis.org

1, 8, 88, 1232, 20944, 418880, 9634240, 250490240, 7264216960, 232454942720, 8135922995200, 309165073817600, 12675768026521600, 557733793166950400, 26213488278846668800, 1310674413942333440000, 69465743938943672320000, 3890081660580845649920000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=5 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604 (rows m=0..4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==(3n+5)a[n-1]},a,{n,20}] (* Harvey P. Dale, Oct 19 2013 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(8/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(8/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+5)(!^3))/5(!^3).
E.g.f.: 1/(1-3*x)^(8/3).
a(n) = 3^n*(n+5/3)!/(5/3)!. - Paul Barry, Sep 04 2005
a(n) = (3*n+5)*a(n-1). - R. J. Mathar, Nov 13 2012
Sum_{n>=0} 1/a(n) = 1 + 3*(9*e)^(1/3)*(Gamma(8/3) - Gamma(8/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051606 a(n) = (3*n+6)!!!/6!!!, related to A032031 ((3*n)!!! triple factorials).

Original entry on oeis.org

1, 9, 108, 1620, 29160, 612360, 14696640, 396809280, 11904278400, 392841187200, 14142282739200, 551549026828800, 23165059126809600, 1042427660706432000, 50036527713908736000, 2551862913409345536000, 137800597324104658944000, 7854634047473965559808000
Offset: 0

Views

Author

Keywords

Comments

Row m=6 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604-A051609 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(9/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    [seq(n!*3^(n-2)/2, n=2..18)]; # Zerinvary Lajos, Sep 23 2006
    with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T),Prod(T,Z,Epsilon),Prod(T,Z))},labeled]:seq(count(ZL,size=i)/6,i=2..18); # Zerinvary Lajos, Dec 16 2007
    restart: G(x):=(1-3*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..16); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(9/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(9/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+6)(!^3))/6(!^3); e.g.f.: 1/(1-3*x)^3.
a(n) = n!*3^(n-2)/2, n >= 2. - Zerinvary Lajos, Sep 23 2006
Sum_{n>=0} 1/a(n) = 18*exp(1/3) - 24. - Amiram Eldar, Dec 18 2022

A051609 a(n) = (3*n+9)!!!/9!!!, related to A032031 ((3*n)!!! triple factorials).

Original entry on oeis.org

1, 12, 180, 3240, 68040, 1632960, 44089920, 1322697600, 43649020800, 1571364748800, 61283225203200, 2573895458534400, 115825295634048000, 5559614190434304000, 283540323712149504000, 15311177480456073216000, 872737116385996173312000, 52364226983159770398720000
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604-A051608 (rows m=0..8).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(12/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    restart: G(x):=(1-3*x)^(n-5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(12/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(12/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+9)(!^3))/9(!^3).
E.g.f.: 1/(1-3*x)^4.
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = (n+3)!*3^(n-1)/2.
Sum_{n>=0} 1/a(n) = 162*exp(1/3) - 225. (End)

A113476 Decimal expansion of (log(2) + Pi/sqrt(3))/3.

Original entry on oeis.org

8, 3, 5, 6, 4, 8, 8, 4, 8, 2, 6, 4, 7, 2, 1, 0, 5, 3, 3, 3, 7, 1, 0, 3, 4, 5, 9, 7, 0, 0, 1, 1, 0, 7, 6, 6, 7, 8, 6, 5, 2, 2, 1, 2, 7, 4, 8, 4, 3, 3, 1, 9, 4, 3, 2, 3, 0, 1, 8, 8, 3, 1, 4, 9, 6, 0, 5, 0, 5, 6, 0, 1, 0, 3, 2, 0, 1, 6, 1, 9, 9, 7, 6, 3, 3, 2, 9, 4, 3, 8, 4, 0, 2, 8, 2, 6, 2, 8, 5, 4, 6, 6, 0, 7
Offset: 0

Views

Author

Benoit Cloitre, Jan 08 2006

Keywords

Comments

This number is transcendental - this follows from a result of Baker (1968) on linear forms of algebraic numbers.

Examples

			0.835648848264721053337... = A073010 + A193535.
		

References

  • Jolley, Summation of Series, Dover (1961), eq (79) page 16.
  • Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equation 21.16

Crossrefs

Programs

  • Mathematica
    RealDigits[(Log[2]+\[Pi]/Sqrt[3])/3,10,120][[1]]  (* Harvey P. Dale, Mar 26 2011 *)
  • PARI
    1/3*(log(2)+Pi/sqrt(3))

Formula

Equals Integral_{x = 0..1} dx/(1+x^3) = Sum_{k >= 0} (-1)^k/(3*k+1) = 1 - 1/4 + 1/7 - 1/10 + 1/13 - 1/16 + ... (see A016777). - Benoit Cloitre, Alonso del Arte, Jul 29 2011
Generalized continued fraction: 1/(1 + 1^2/(3 + 4^2/(3 + 7^2/(3 + 10^2/(3 + ... ))))) due to Euler. For a sketch proof see A024217. - Peter Bala, Feb 22 2015
Equals (1/2)*Sum_{n >= 0} n!*(3/2)^n/(Product_{k = 0..n} 3*k + 1) = (1/2)*Sum_{n >= 0} n!*(3/2)^n/A007559(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(3*k + 1)). - Peter Bala, Dec 01 2021
From Peter Bala, Mar 03 2024: (Start)
Equals hypergeom([1/3, 1], [4/3], -1).
Gauss's continued fraction: 1/(1 + 1/(4 + 3^2/(7 + 4^2/(10 + 6^2/(13 + 7^2/(16 + 9^2/(19 + 10^2/(22 + 12^2/(25 + 13^2/(28 + ... )))))))))). (End)
Equals (1/12) * Sum_{n >= 0} (-1/2)^n * (9*n + 7)/((3*n + 2)*(n + 1)*binomial(2*n+1/3, n+1)). - Peter Bala, Mar 05 2025

A136212 Triple factorial array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {[m*(m+5)/6], m >= 0} and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 28, 10, 3, 1, 280, 80, 18, 4, 1, 3640, 880, 162, 28, 5, 1, 58240, 12320, 1944, 280, 39, 6, 1, 1106560, 209440, 29160, 3640, 418, 52, 7, 1, 24344320, 4188800, 524880, 58240, 5714, 600, 66, 8, 1, 608608000, 96342400, 11022480, 1106560, 95064
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2007

Keywords

Comments

This is the triple factorial variant of Moessner's factorial array described by A125714 and also of the double factorial array A135876. Another very interesting variant is A136217.

Examples

			Square array begins:
(1),(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,...;
(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),19,20,21,..;
(4),(10),(18),28,(39),52,(66),82,(99),118,138,(159),182,206,(231),258,286,..;
(28),(80),(162),280,(418),600,(806),1064,(1350),1696,2074,(2485),2966,3484,..;
(280),(880),(1944),3640,(5714),8680,(12164),16840,(22194),29080,36824,(45474),.;
(3640),(12320),(29160),58240,(95064),151200,(219108),315440,(428652),581680,...;
(58240),(209440),(524880),1106560,(1864456),3082240,...;
where terms in parenthesis are at positions {[m*(m+5)/6], m>=0}
and are removed before taking partial sums to obtain the next row.
To generate the array, start with all 1's in row 0; from then on,
obtain row n+1 from row n by first removing terms in row n at
positions {[m*(m+5)/6], m>=0} and then taking partial sums.
For example, to generate row 2 from row 1:
[(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),...],
remove terms at positions [0,1,2,4,6,8,11,14,17,...] to get:
[4, 6, 8, 10,11, 13,14, 16,17, 19,20,21, 23,24,25, 27,28,29, ...]
then take partial sums to obtain row 2:
[4, 10, 18, 28,39, 52,66, 82,99, 118,138,159, 182,206,231, ...].
Continuing in this way will generate all the rows of this array.
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = Module[{a = 0, m = 0, c = 0, d = 0}, If[n == 0, a = 1, While[d <= k, If[c == Quotient[(m*(m + 5)), 6], m += 1, a += t[n - 1, c]; d += 1]; c += 1]]; a]; Table[t[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==(m*(m+5))\6, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}

Formula

Columns 0, 1 and 2 form the triple factorials A007559, A008544 and A032031, respectively. Column 4 equals A024216; column 6 equals A024395.

A256268 Table of k-fold factorials, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 01 2015

Keywords

Comments

A variant of A142589.

Examples

			1  1   1    1     1       1         1... A000012
1  1   2    6    24     120       720... A000142
1  1   3   15   105     945     10395... A001147
1  1   4   28   280    3640     58240... A007559
1  1   5   45   585    9945    208845... A007696
1  1   6   66  1056   22176    576576... A008548
1  1   7   91  1729   43225   1339975... A008542
1  1   8  120  2640   76560   2756160... A045754
1  1   9  153  3825  126225   5175225... A045755
1  1  10  190  5320  196840   9054640... A045756
1  1  11  231  7161  293601  14977651... A144773
		

Crossrefs

Cf. Diagonals : A092985, A076111, A158887.
Cf. A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A045756 (9), A144773 (10)

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
  • Mathematica
    T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    T(n,k) = prod(j=0, n-1, j*k+1);
    for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
    
  • Sage
    [[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
    

Formula

A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - Peter Luschny, Dec 21 2021

A349194 a(n) is the product of the sum of the first i digits of n, as i goes from 1 to the total number of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 49, 56, 63, 70, 77
Offset: 1

Views

Author

Malo David, Nov 10 2021

Keywords

Comments

The only primes in the sequence are 2, 3, 5 and 7. - Bernard Schott, Nov 23 2021

Examples

			For n=256, a(256) = 2*(2+5)*(2+5+6) = 182.
		

Crossrefs

Cf. A055642, A284001 (binary analog), A349190 (fixed points).
Cf. A007953 (sum of digits), A059995 (floor(n/10)).
Cf. A349278 (similar, with the last digits).

Programs

  • Magma
    f:=func; [f(n):n in [1..100]]; // Marius A. Burtea, Nov 23 2021
  • Mathematica
    Table[Product[Sum[Part[IntegerDigits[n],j],{j,i}],{i,Length[IntegerDigits[n]]}],{n,74}] (* Stefano Spezia, Nov 10 2021 *)
  • PARI
    a(n) = my(d=digits(n)); prod(i=1, #d, sum(j=1, i, d[j])); \\ Michel Marcus, Nov 10 2021
    
  • PARI
    first(n)=if(n<9,return([1..n])); my(v=vector(n)); for(i=1,9,v[i]=i); for(i=10,n, v[i]=sumdigits(i)*v[i\10]); v \\ Charles R Greathouse IV, Dec 04 2021
    
  • Python
    from math import prod
    from itertools import accumulate
    def a(n): return prod(accumulate(map(int, str(n))))
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Nov 10 2021
    

Formula

For n>10: a(n) = a(A059995(n))*A007953(n) where A059995(n) = floor(n/10).
In particular, for n<100: a(n) = floor(n/10)*A007953(n)
From Bernard Schott, Nov 23 2021: (Start)
a(n) = 1 iff n = 10^k, k >= 0 (A011557).
a(n) = 2 iff n = 10^k + 1, k >= 0 (A000533 \ {1}).
a(n) = 3 iff n = 10^k + 2, k >= 0 (A133384).
a(n) = 5 iff n = 10^k + 4, k >= 0.
a(n) = 7 iff n = 10^k + 6, k >= 0. (End)
From Marius A. Burtea, Nov 23 2021: (Start)
a(A002275(n)) = n! = A000142(n), n >= 1.
a(A090843(n - 1)) = (2*n - 1)!! = A001147(n), n >= 1.
a(A097166(n)) = (3*n - 2)!!! = A007559(n).
a(A093136(n)) = 2^n = A000079(n).
a(A093138(n)) = 3^n = A000244(n). (End)

A004117 Numerators of expansion of (1-x)^(-1/3).

Original entry on oeis.org

1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is also the numerator of beta(n+1/3,2/3)*sqrt(27)/(2*Pi). - Groux Roland, May 17 2011

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/3,n] (-1)^n],{n,0,40}] (* Vincenzo Librandi, Jun 13 2012 *)
  • PARI
    a(n)=prod(k=1,n,3*k-2)/n!*3^sum(k=1,n,valuation(k,3))

Formula

(1/n!) * 3^A054861(n) * Product_{k=0..n-1} (3k+1). - Ralf Stephan, Mar 13 2004
Numerators in (1-3t)^(-1/3) = 1 + t + 2*t^2 + (14/3)*t^3 + (35/3)*t^4 + (91/3)*t^5 + (728/9)*t^6 + (1976/9)*t^7 + (5434/9)*t^8 + ... = 1 + t + 4*t^2/2! + 28*t^3/3! + 280*t^4/4! + 3640*t^5/5! + 58240*t^6/6! + ... = e.g.f. for triple factorials A007559 (cf. A094638). - Tom Copeland, Dec 04 2013

Extensions

Typo in formula fixed by Pontus von Brömssen, Nov 25 2008

A024216 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 3.

Original entry on oeis.org

1, 5, 39, 418, 5714, 95064, 1864456, 42124592, 1077459120, 30777463360, 971142388160, 33547112941440, 1259204418129280, 51032742579123200, 2220990565060377600, 103308619261574809600, 5114702794181847910400
Offset: 0

Views

Author

Keywords

Comments

Comment by R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 1+j*3, j=0..n-1, form a triangle T(n,k), 0 <= k <= n, n >= 0:
1
1 1
1 5 4
1 12 39 28
1 22 159 418 280
1 35 445 2485 5714 3640
1 51 1005 9605 45474 95064 58240
1 70 1974 28700 227969 959070 1864456 1106560
1 92 3514 72128 859369 5974388 22963996 42124592 24344320
This here is the first subdiagonal. The diagonal seems to be A007559. The first columns are A000012, A000326, A024212, A024213, A024214. (End)

Examples

			From _Gheorghe Coserea_, Dec 24 2015: (Start)
For n = 1 we have a(1) = 1*4*(1/1 + 1/4) = 5.
For n = 2 we have a(2) = 1*4*7*(1/1 + 1/4 + 1/7) = 39.
For n = 3 we have a(3) = 1*4*7*10*(1/1 + 1/4 + 1/7 + 1/10) = 418.
(End)
		

Crossrefs

Cf. A024395, A024382, A286718 (first column).

Programs

  • Magma
    I:=[5,39]; [1] cat [n le 2 select I[n] else (6*n-1) * Self(n-1) - (3*n-2)^2 * Self(n-2) : n in [1..30]]; // Vincenzo Librandi, Aug 30 2015
  • Maple
    f:= gfun:-rectoproc({-(3*n+1)^2*a(n-1)+(6*n+5)*a(n)-a(n+1), a(0) = 1, a(1) = 5, a(2) = 39}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Aug 30 2015
  • Mathematica
    Rest[CoefficientList[Series[-(1/3)*Log[1-3*x]/(1-3*x)^(1/3), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    n = 33; a = vector(n); a[1] = 5; a[2] = 39;
    for (k = 2, n-1, a[k+1] = (6*k+5) * a[k] - (3*k+1)^2 * a[k-1]);
    print(concat(1,a));  \\ Gheorghe Coserea, Aug 29 2015
    

Formula

E.g.f. (for offset 1): -(1/3)*log(1-3*x)/(1-3*x)^(1/3). - Vladeta Jovovic, Sep 26 2003
For n >= 1, a(n-1) = 3^(n-1)*n!*Sum_{k=0..n-1} binomial(k-2/3, k)/(n-k). - Milan Janjic, Dec 14 2008, corrected by Peter Bala, Oct 08 2013
a(n) ~ (n+1)! * GAMMA(2/3) * 3^(n+3/2) * (log(n) + gamma + Pi*sqrt(3)/6 + 3*log(3)/2) / (6*Pi*n^(2/3)), where "GAMMA" is the Gamma function and "gamma" is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 07 2013
a(n+1) = (6*n+5) * a(n) - (3*n+1)^2 * a(n-1). - Gheorghe Coserea, Aug 29 2015
E.g.f.: (3 - log(1-3*x))/(3*(1-3*x)^(4/3)). - Robert Israel, Aug 30 2015
a(n) = A286718(n+1, 1), n >= 0.
Boas-Buck type recurrence: a(0) = 1 and for n >= 1: a(n) = ((n+1)!/n) * Sum_{p=1..n} 3^(n-p)*(1 + 3*beta(n-p))*a(p-1)/p!, with beta(k) = A002208(k+1) / A002209(k+1). Proof from a(n) = A286718(n+1, 1). - Wolfdieter Lang, Aug 09 2017

Extensions

More terms from Vladeta Jovovic, Sep 26 2003
Previous Showing 51-60 of 134 results. Next