A351293
Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 28, 44, 56, 80, 111, 148, 192, 264, 335, 447, 575, 743, 937, 1213, 1513, 1924, 2396, 3011, 3715, 4646, 5687, 7040, 8600, 10556, 12804, 15650, 18897, 22930, 27593, 33296, 39884, 47921, 57168, 68360, 81295, 96807, 114685
Offset: 0
The a(3) = 1 through a(9) = 14 partitions:
(21) (31) (32) (42) (43) (53) (54)
(41) (51) (52) (62) (63)
(321) (61) (71) (72)
(2211) (421) (431) (81)
(3211) (521) (432)
(3221) (531)
(3311) (621)
(4211) (3321)
(32111) (4221)
(4311)
(5211)
(32211)
(42111)
(321111)
These are all non-Wilf partitions (counted by
A336866, ranked by
A130092).
These partitions appear to be ranked by
A351295.
Non-Wilf partitions in the complement are counted by
A351592.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A098859 = Wilf partitions (distinct multiplicities), ranked by
A130091.
A181819 = Heinz number of the prime signature of n (prime shadow).
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths, for all runs
A351013.
A351017 = binary words with all distinct run-lengths, for all runs
A351016.
A351292 = patterns with all distinct run-lengths, for all runs
A351200.
Cf.
A000041,
A008284,
A047966,
A182857,
A225485,
A238130,
A297770,
A304660,
A305563,
A329740,
A329746,
A351202,
A351291.
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* Gus Wiseman, Aug 13 2025 *)
A359901
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
Including half-steps gives
A359893.
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]
A069905
Number of partitions of n into 3 positive parts.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0
G.f. = x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + 10*x^11 + ...
- Ross Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410.
- Donald E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
- Washington Bomfim, Table of n, a(n) for n = 0..10000
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Nick Fischer and Christian Ikenmeyer, The Computational Complexity of Plethysm Coefficients, arXiv:2002.00788 [cs.CC], 2020.
- Ross Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
- J. H. Jordan, R. Walch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly, 86 (1979), 686-689.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Another version of
A001399, which is the main entry for this sequence.
-
List([0..70],n->NrPartitions(n,3)); # Muniru A Asiru, May 17 2018
-
a069905 n = a069905_list !! n
a069905_list = scanl (+) 0 a008615_list
-- Reinhard Zumkeller, Apr 28 2014
-
[(n^2+6) div 12: n in [0..70]]; // Vincenzo Librandi, Oct 14 2015
-
A069905 := n->round(n^2/12): seq(A069905(n), n=0..70);
-
a[ n_]:= Round[ n^2 / 12] (* Michael Somos, Sep 04 2013 *)
CoefficientList[Series[x^3/((1-x)(1-x^2)(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 14 2015 *)
Drop[LinearRecurrence[{1,1,0,-1,-1,1}, Append[Table[0,{5}],1],70],2] (* Robert A. Russell, May 17 2018 *)
-
a(n) = floor((n^2+6)/12); \\ Washington Bomfim, Jul 03 2012
-
my(x='x+O('x^70)); concat([0, 0, 0], Vec(x^3/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Oct 14 2015
-
[round(n^2/12) for n in range(70)] # G. C. Greubel, Apr 03 2019
A115994
Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
Original entry on oeis.org
1, 2, 3, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 1, 10, 30, 2, 11, 40, 5, 12, 55, 10, 13, 70, 18, 14, 91, 30, 15, 112, 49, 16, 140, 74, 1, 17, 168, 110, 2, 18, 204, 158, 5, 19, 240, 221, 10, 20, 285, 302, 20, 21, 330, 407, 34, 22, 385, 536, 59, 23, 440, 698, 94, 24, 506, 896, 149, 25
Offset: 1
T(5,2) = 2 because the only partitions of 5 having Durfee square of size 2 are [3,2] and [2,2,1]; the other five partitions ([5], [4,1], [3,1,1], [2,1,1,1] and [1,1,1,1,1]) have Durfee square of size 1.
Triangle starts:
1;
2;
3;
4, 1;
5, 2;
6, 5;
7, 8;
8, 14;
9, 20, 1;
...
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
- Alois P. Heinz, Rows n = 1..1000, flattened
- E. R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deductions, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 768-797
- E. R. Canfield, S. Corteel, C. D. Savage, Durfee Polynomials, Electronic Journal of Combinatorics 5 (1998), #R32.
- S. B. Ekhad, D. Zeilberger, A Quick Empirical Reproof of the Asymptotic Normality of the Hirsch Citation Index (First proved by Canfield, Corteel, and Savage), arXiv preprint arXiv:1411.0002, 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45
- Eric Weisstein's World of Mathematics, Durfee Square.
-
g:=sum(t^k*q^(k^2)/product((1-q^j)^2,j=1..k),k=1..40): gser:=series(g,q=0,32): for n from 1 to 27 do P[n]:=coeff(gser,q^n) od: for n from 1 to 27 do seq(coeff(P[n],t^j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # Alois P. Heinz, Apr 09 2012
-
Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[ Series[x^(n^2)/Product[1-x^i,{i,1,n}]^2,{x,0,nn}],x],{n,1,10}]],1]] //Grid (* Geoffrey Critzer, Sep 27 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[T[n, k], {n, 1, 30}, {k, 1, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *)
A364350
Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
Offset: 0
The a(16) = 6 through a(22) = 12 strict partitions:
(16) (17) (18) (19) (20) (21) (22)
(9,7) (9,8) (10,8) (10,9) (11,9) (12,9) (13,9)
(10,6) (10,7) (11,7) (11,8) (12,8) (13,8) (14,8)
(11,5) (11,6) (13,5) (12,7) (13,7) (15,6) (15,7)
(13,3) (12,5) (14,4) (13,6) (14,6) (16,5) (16,6)
(7,5,4) (13,4) (7,6,5) (14,5) (17,3) (17,4) (17,5)
(14,3) (8,7,3) (15,4) (8,7,5) (19,2) (18,4)
(15,2) (16,3) (9,6,5) (11,10) (19,3)
(7,6,4) (17,2) (9,7,4) (8,7,6) (12,10)
(8,6,5) (11,5,4) (9,7,5) (9,7,6)
(9,6,4) (10,7,4) (9,8,5)
(10,8,3) (7,6,5,4)
(11,6,4)
(11,7,3)
For sums of subsets instead of combinations of partitions we have
A151897.
For subsets instead of partitions we have
A326083, complement
A364914.
A more strict variation is
A364915.
The case of all positive coefficients is
A365006.
A364912 counts linear combinations of partitions of k.
Cf.
A007865,
A085489,
A237113,
A275972,
A363226,
A364272,
A364533,
A364910,
A364911,
A365002,
A365004.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combs[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
def A364350(n):
if n <= 1: return 1
alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
for p in partitions(n,k=n-1):
if max(p.values(),default=0)==1:
s = set(p)
if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
c += 1
return c # Chai Wah Wu, Sep 23 2023
A131689
Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 2
3: 0 1 6 6
4: 0 1 14 36 24
5: 0 1 30 150 240 120
6: 0 1 62 540 1560 1800 720
7: 0 1 126 1806 8400 16800 15120 5040
8: 0 1 254 5796 40824 126000 191520 141120 40320
9: 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
(i) A - (ii) A - (iii) A -
B - B - - B
C - - C - C
- D - D - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
- Vincenzo Librandi, Rows n = 0..100, flattened
- Peter Bala, Deformations of the Hadamard product of power series
- F. Brenti and V. Welker, f-vectors of barycentric subdivisions, arXiv:math/0606356 [math.CO], Math. Z., 259(4), 849-865, 2008.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Massimo Nocentini, An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation, PhD Thesis, University of Florence, 2019. See Ex. 36.
- Mircea Dan Rus, Yet another note on notation, arXiv:2501.08762 [math.HO], 2025. See p. 6.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Wikipedia, Barycentric subdivision
- Wikipedia, Simplicial complex
- Wikipedia, Simplex
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Columns k=0..10 are
A000007,
A000012,
A000918,
A001117,
A000919,
A001118,
A000920,
A135456,
A133068,
A133360,
A133132,
Case m=1 of the polynomials defined in
A278073.
Classes of patterns:
-
A032011 = distinct multiplicities
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) + T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
# Alternatively:
A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
-
t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
-
@cached_function
def F(n): # Fubini polynomial
R. = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021
A364272
Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
Offset: 0
The a(6) = 1 through a(16) = 11 partitions (A=10):
(321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853)
(541) (651) (6421) (752) (6531) (862)
(4321) (5421) (7321) (761) (7431) (871)
(6321) (5432) (7521) (6532)
(6431) (9321) (6541)
(6521) (54321) (7432)
(7421) (7621)
(8321) (8431)
(8521)
(A321)
(64321)
The linear combination-free version is
A364350.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}]
A008483
Number of partitions of n into parts >= 3.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
- Andrew van den Hoeven, Table of n, a(n) for n = 0..10000 (first 301 terms from Vincenzo Librandi)
- Peter Adams, Saad I. El-Zanati, Peter Florido, and William Turner, On 2-Factorizations of the Complete 3-Uniform Hypergraph of Order 12 Minus a 1-Factor, Combinatorics, Graph Theory and Computing (SEICCGTC 2021) Springer Proc. Math. Stat., Vol 448, pp. 383-392. See p. 326.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- R.-Q. Feng, J. H. Kwak and E. K. Lloyd, Isomorphism classes of authentication codes, Bull. Austral. Math. Soc. 69 (2004), no. 2, 203-215.
- Elisabeth Gaar and Daniel Krenn, Metamour-regular Polyamorous Relationships and Graphs, arXiv:2005.14121 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 446
- F. Jouneau-Sion and O. Torres, In Fisher's net: exact F-tests in semi-parametric models with exchangeable errors, August 2014, preprint on ResearchGate.
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g.
- Johan Kok, Degree affinity number of certain 2-regular graphs, Open J. of Disc. Appl. Math. (2020) Vol. 3, No. 3, 77-84.
- Eric Weisstein's World of Mathematics, Two-Regular Graph.
2-regular simple graphs:
A179184 (connected),
A165652 (disconnected), this sequence (not necessarily connected).
2-regular not necessarily connected graphs without multiple edges [partitions without 2 as a part]: this sequence (no loops allowed [without 1 as a part]),
A027336 (loops allowed [parts may be 1]).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]:
A026807 (triangle); chosen g:
A000041 (g=1 -- multigraphs with loops allowed),
A002865 (g=2 -- multigraphs with loops forbidden), this sequence (g=3),
A008484 (g=4),
A185325 (g=5),
A185326 (g=6),
A185327 (g=7),
A185328 (g=8),
A185329 (g=9).
-
p := NumberOfPartitions; A008483 := func< n | n eq 0 select 1 else n le 2 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3)>; // Jason Kimberley, Jan 11 2011
-
series(1/product((1-x^i),i=3..50),x,51);
ZL := [ B,{B=Set(Set(Z, card>=3))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..46); # Zerinvary Lajos, Mar 13 2007
with(combstruct):ZL2:=[S,{S=Set(Cycle(Z,card>2))}, unlabeled]:seq(count(ZL2,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
with(combstruct):a:=proc(m) [A,{A=Set(Cycle(Z,card>m))},unlabeled]; end: A008483:=a(2):seq(count(A008483,size=n),n=0..46); # Zerinvary Lajos, Oct 02 2007
-
f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 3], {n, 49}] (* Robert G. Wilson v, Jan 31 2011 *)
Rest[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p]]], {n, 50}]] (* Clark Kimberling, Feb 27 2014 *)
-
a(n) = numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3) \\ Charles R Greathouse IV, Jul 19 2011
-
from sympy import partition
def A008483(n): return partition(n)-partition(n-1)-partition(n-2)+partition(n-3) # Chai Wah Wu, Jun 10 2025
A237113
Number of partitions of n such that some part is a sum of two other parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
Offset: 0
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(0) = 0 through a(9) = 10 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(21111) (211111) (3221) (4311)
(4211) (5211)
(22211) (32211)
(32111) (42111)
(221111) (222111)
(2111111) (321111)
(2211111)
(21111111)
(End)
These partitions have ranks
A364462.
-
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,30}] (* Gus Wiseman, Aug 09 2023 *)
A359902
Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
0 1
1 0 1
1 0 0 1
2 1 0 0 1
2 2 0 0 0 1
4 2 1 0 0 0 1
4 3 2 0 0 0 0 1
7 4 3 1 0 0 0 0 1
8 6 3 2 0 0 0 0 0 1
12 8 4 3 1 0 0 0 0 0 1
14 11 5 4 2 0 0 0 0 0 0 1
21 14 8 4 3 1 0 0 0 0 0 0 1
24 20 10 5 4 2 0 0 0 0 0 0 0 1
34 25 15 6 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(3,3,1,1,1) (6,2,1) (4,3,2)
(4,2,1,1,1) (2,2,2,2,1) (5,3,1)
(5,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]
Comments