cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A181598 Numbers m with divisor 8 | m and abundance sigma(m)-2*m = 8.

Original entry on oeis.org

56, 368, 11096, 17816, 77744, 128768, 2087936, 2291936, 13174976, 35021696, 45335936, 381236216, 4856970752, 6800228816, 8589344768, 1461083549696, 1471763808896, 2199013818368, 19502341651712, 118123076415296, 933386556194816, 144141575952121856, 417857739454939136
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

a(19) > 10^13. - Giovanni Resta, Apr 02 2014

Crossrefs

Programs

  • PARI
    isok(n) = !(n % 8) && (sigma(n) - 2*n == 8); \\ Michel Marcus, Feb 08 2016

Formula

A088833 INTERSECT A008590. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased by R. J. Mathar, Nov 04 2010
a(16)-a(17) from Donovan Johnson, Dec 08 2011
a(18) from Giovanni Resta, Apr 02 2014
a(19)-a(23) from the b-file at A088833 added by Amiram Eldar, Mar 11 2024

A283122 a(n) = sigma(8*n).

Original entry on oeis.org

15, 31, 60, 63, 90, 124, 120, 127, 195, 186, 180, 252, 210, 248, 360, 255, 270, 403, 300, 378, 480, 372, 360, 508, 465, 434, 600, 504, 450, 744, 480, 511, 720, 558, 720, 819, 570, 620, 840, 762, 630, 992, 660, 756, 1170, 744, 720, 1020, 855, 961
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), this sequence (k=8), A283123 (k=9).
Cf. A008590.

Programs

Formula

a(n) = A000203(8*n).
Sum_{k=1..n} a(k) = (23*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A073577 a(n) = 4*n^2 + 4*n - 1.

Original entry on oeis.org

7, 23, 47, 79, 119, 167, 223, 287, 359, 439, 527, 623, 727, 839, 959, 1087, 1223, 1367, 1519, 1679, 1847, 2023, 2207, 2399, 2599, 2807, 3023, 3247, 3479, 3719, 3967, 4223, 4487, 4759, 5039, 5327, 5623, 5927, 6239, 6559, 6887, 7223, 7567, 7919, 8279, 8647
Offset: 1

Views

Author

M. N. Deshpande (dpratap(AT)nagpur.dot.net.in), Aug 27 2002

Keywords

Comments

The sum of the squares of two consecutive terms multiplied (or divided) by 2 is always a perfect square. In general, numbers represented by the quadratic form a(n) = (2*i*n + j)^2 - 2*i^2 for any i and j have 2*(a(n)^2 + a(n+1)^2) and (a(n)^2 + a(n+1)^2)/2 as perfect squares: in this case, i=j=1.
The terms of this sequence may be seen to be 2 less than the odd squares. As such they run parallel to those in the square spiral as well as the Ulam square spiral. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Oct 01 2002
Primes in the sequence are in A028871. - Russ Cox, Aug 26 2019
The continued fraction expansion of sqrt(4*a(n)) is [4n+1; {1, n-1, 2, 2n, 2, n-1, 1, 8n+2}]. For n=1, this collapses to [5; {3, 2, 3, 10}]. - Magus K. Chu, Sep 12 2022

Examples

			a(2) = 8*2 + 7 = 23;
a(3) = 8*3 + 23 = 47;
a(4) = 8*4 + 47 = 79. - _Vincenzo Librandi_, Aug 08 2010
		

Crossrefs

Programs

Formula

a(n) = FrobeniusNumber(2*n+1, 2*n+3). - Darrell Minor, Jul 29 2008
a(n) = 8*n + a(n-1) (with a(1)=7). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(7+2*x-x^2)/(1-x)^3. - Robert Israel, Jan 13 2015
E.g.f.: 1 - (1-8*x-4*x^2)*exp(x). - Robert Israel, Jan 13 2015
a(n+1) = a(n) + A008590(n+1), a(1) = 7. - Altug Alkan, Sep 28 2015
a(n) = (2*n+1)+(2*n-1) + (2*n+1)*(2*n-1). - J. M. Bergot, Apr 17 2016
a(n) = (2*n+1)^2 - 2. - Zhandos Mambetaliyev, Jun 13 2017
From Stefano Spezia, Nov 04 2018: (Start)
L.g.f.: 4*x*(2+x)/(1+x)^2-log(1+x).
L.h.g.f.: -4*(-2+x)*x/(-1+x)^2+log(1-x).
(End)
Sum_{n>=1} 1/a(n) = 1 + sqrt(2)*Pi*tan(Pi/sqrt(2))/8. - Amiram Eldar, Jan 03 2021

Extensions

Edited and extended by Henry Bottomley, Oct 10 2002

A185359 Numbers k such that {m^m mod k: m >= 1} is not purely periodic.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 81, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 162, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 243, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 324, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400
Offset: 1

Views

Author

Keywords

Comments

k is a term if and only if k = Product_{i=1..t} p_i^e_i with e_i > p_i for some i.
A182938(a(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - 1/p^(p+1) = 0.13585792767780221591... - Amiram Eldar, Nov 24 2020

Crossrefs

Cf. A027748, A124010, A008590 (subsequence), A185358, A207481 (complement).

Programs

  • Haskell
    a185359 n = a185359_list !! (n-1)
    a185359_list = [x | x <- [1..], or $ zipWith (<)
                        (a027748_row x) (map toInteger $ a124010_row x)]
    -- Reinhard Zumkeller, Feb 18 2012
  • Mathematica
    j[p_,e_]:=e>p;j[n_]:={False}==Union@Module[{fa=FactorInteger[n]},Table[j[fa[[i,1]],fa[[i,2]]],{i,1,Length[fa]}]];Select[Range[1000],!j[#]&]

A045643 Palindromic and divisible by 8.

Original entry on oeis.org

0, 8, 88, 232, 272, 424, 464, 616, 656, 696, 808, 848, 888, 2112, 2552, 2992, 4224, 4664, 6336, 6776, 8008, 8448, 8888, 21112, 21312, 21512, 21712, 21912, 23032, 23232, 23432, 23632, 23832, 25152, 25352, 25552, 25752, 25952, 27072, 27272, 27472
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]];Select[ 8Range[0,3500],palQ] (* Harvey P. Dale, Jun 06 2011 *)
    Select[8*Range[0, 3500],PalindromeQ] (* Harvey P. Dale, Feb 17 2023 *)

Extensions

Edited to include a(1) = 0 by Paolo Xausa, Jul 07 2025

A047592 Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81
Offset: 1

Views

Author

Keywords

Comments

Or, numbers that are not multiples of 8. - Benoit Cloitre, Jul 11 2009
More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n, m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008590. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

  • Magma
    [ n: n in [0..100] | n mod 8 in {1, 2, 3, 4, 5, 6, 7} ]; // Vincenzo Librandi, Dec 25 2010
  • Maple
    A047592:=n->8*floor(n/7)+[1, 2, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047592(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Complement[Range[88], 8Range[11]] (* Harvey P. Dale, Jan 22 2011 *)
    CoefficientList[Series[(1 + x)*(1 + x^2)*(1 + x^4)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n)=n-1+floor((n+6)/7) \\ Benoit Cloitre, Jul 11 2009
    

Formula

a(n) = n - 1 + floor((n+6)/7). - Benoit Cloitre, Jul 11 2009
A168181(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Mar 08 2011: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x*(1+x)*(1+x^2)*(1+x^4) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). (End)
a(n) = A207481(n) for n <= 70. - Reinhard Zumkeller, Feb 18 2012
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (56*n - 28 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) - 6*((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-3, a(7k-3) = 8k-4, a(7k-4) = 8k-5, a(7k-5) = 8k-6, a(7k-6) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(sqrt(2)+2) - 2*sqrt(2) - 1)*Pi/16. - Amiram Eldar, Dec 28 2021

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017

A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2006

Keywords

Examples

			Triangle begins as:
   1;
   2,  2;
   3,  4,  3;
   4,  6,  6,  5;
   5,  8,  9, 10,  8;
   6, 10, 12, 15, 16, 13;
   7, 12, 15, 20, 24, 26,  21;
   8, 14, 18, 25, 32, 39,  42,  34;
   9, 16, 21, 30, 40, 52,  63,  68,  55;
  10, 18, 24, 35, 48, 65,  84, 102, 110,  89;
  11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
  12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
		

Crossrefs

Main diagonal: A023607(n).
Sums: A001891 (row), A355020 (signed row).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Diagonals: A000045(n+1) (k=n), A006355(n+1) (k=n-1), A022086(n-1) (k=n-2), A022087(n-2) (k=n-3), A022088(n-3) (k=n-4), A022089(n-4) (k=n-5), A022090(n-5) (k=n-6).

Programs

  • Magma
    A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
    [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
    
  • Mathematica
    (* First program *)
    T[n_, 1] := n;
    T[n_ /; n > 1, 2] := 2 n - 2;
    T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
    (* Second program *)
    A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
    Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
  • SageMath
    def A119457(n,k): return (n-k+1)*fibonacci(k+1)
    print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025

Formula

T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A023652(floor((n+1)/2)) + (1+(-1)^n)*A001891(floor(n/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n)*A112469(floor((n-1)/2)) + (1+(-1)^n)*A355020(floor((n-2)/2)). (End)

A212703 Main transitions in systems of n particles with spin 4.

Original entry on oeis.org

8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=9 (see formula), corresponding to spin S=(b-1)/2=4.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212702, A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).

Programs

  • Mathematica
    LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
    
  • PARI
    Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
    
  • PARI
    a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=9.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) for n > 2.
G.f.: 8*x/(9*x-1)^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 8*x*exp(9*x).
a(n) = 8*A053540(n) = A008590(n)*A001019(n-1). (End)

A047393 Numbers that are congruent to {0, 1} mod 8.

Original entry on oeis.org

0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, 64, 65, 72, 73, 80, 81, 88, 89, 96, 97, 104, 105, 112, 113, 120, 121, 128, 129, 136, 137, 144, 145, 152, 153, 160, 161, 168, 169, 176, 177, 184, 185, 192, 193, 200, 201, 208, 209, 216, 217, 224, 225, 232
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that floor(k/2) = 4*floor(k/8). - Bruno Berselli, Oct 05 2017

Crossrefs

Union of A008590 and A017077.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+8 od: seq(a[n], n=0..58); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    Riffle[#, # + 1] & [Range[0, 400, 8]] (* Paolo Xausa, Mar 11 2025 *)
  • PARI
    forstep(n=0,200,[1,7],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • PARI
    a(n) = 4*n - 11/2 - 3*(-1)^n/2; \\ David Lovler, Jul 25 2022
    
  • Python
    def A047393(n): return n-1<<2 if n&1 else (n<<2)-7 # Chai Wah Wu, Mar 11 2025

Formula

a(n) = 8*n - a(n-1) - 15 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 11/2 - 3*(-1)^n/2.
G.f.: x^2*(1+7*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A146541(k). - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)+1)*Pi/16 + log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: ((8*x - 3)*exp(x) + 3*exp(-x))/2 = 4*x*exp(x) - 3*sinh(x). - David Lovler, Aug 02 2022

Extensions

More terms from James Sellers, Jun 20 2000
Previous Showing 21-30 of 66 results. Next