A181598
Numbers m with divisor 8 | m and abundance sigma(m)-2*m = 8.
Original entry on oeis.org
56, 368, 11096, 17816, 77744, 128768, 2087936, 2291936, 13174976, 35021696, 45335936, 381236216, 4856970752, 6800228816, 8589344768, 1461083549696, 1471763808896, 2199013818368, 19502341651712, 118123076415296, 933386556194816, 144141575952121856, 417857739454939136
Offset: 1
Cf.
A008590,
A088833,
A097498,
A181595,
A181596,
A181597,
A118372,
A045768,
A000396,
A005101,
A153501,
A005820.
A283122
a(n) = sigma(8*n).
Original entry on oeis.org
15, 31, 60, 63, 90, 124, 120, 127, 195, 186, 180, 252, 210, 248, 360, 255, 270, 403, 300, 378, 480, 372, 360, 508, 465, 434, 600, 504, 450, 744, 480, 511, 720, 558, 720, 819, 570, 620, 840, 762, 630, 992, 660, 756, 1170, 744, 720, 1020, 855, 961
Offset: 1
A073577
a(n) = 4*n^2 + 4*n - 1.
Original entry on oeis.org
7, 23, 47, 79, 119, 167, 223, 287, 359, 439, 527, 623, 727, 839, 959, 1087, 1223, 1367, 1519, 1679, 1847, 2023, 2207, 2399, 2599, 2807, 3023, 3247, 3479, 3719, 3967, 4223, 4487, 4759, 5039, 5327, 5623, 5927, 6239, 6559, 6887, 7223, 7567, 7919, 8279, 8647
Offset: 1
M. N. Deshpande (dpratap(AT)nagpur.dot.net.in), Aug 27 2002
a(2) = 8*2 + 7 = 23;
a(3) = 8*3 + 23 = 47;
a(4) = 8*4 + 47 = 79. - _Vincenzo Librandi_, Aug 08 2010
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, Expositiones Mathematicae, Vol. 38, No. 4 (2020), pp. 430-479; arXiv preprint, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.7, p. 36 (p. 35 in the preprint).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50],n->4*n^2+4*n-1); # Muniru A Asiru, Nov 01 2018
-
[4*n^2 + 4*n - 1: n in [1..50]]; // Wesley Ivan Hurt, Apr 18 2016
-
seq(4*n^2+4*n-1,n=1..100); # Robert Israel, Jan 13 2015
-
Table[4*n^2+4*n-1,{n,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *)
LinearRecurrence[{3,-3,1},{7,23,47},50] (* Harvey P. Dale, Dec 04 2018 *)
-
A073577(n):=4*n^2+4*n-1$
makelist(A073577(n),n,1,30); /* Martin Ettl, Nov 01 2012 */
-
vector(50, n, 4*n^2 + 4*n - 1) \\ Michel Marcus, Jan 14 2015
-
for n in range(1,50): print(4*n**2+4*n-1, end=', ') # Stefano Spezia, Nov 01 2018
A185359
Numbers k such that {m^m mod k: m >= 1} is not purely periodic.
Original entry on oeis.org
8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 81, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 162, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 243, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 324, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400
Offset: 1
-
a185359 n = a185359_list !! (n-1)
a185359_list = [x | x <- [1..], or $ zipWith (<)
(a027748_row x) (map toInteger $ a124010_row x)]
-- Reinhard Zumkeller, Feb 18 2012
-
j[p_,e_]:=e>p;j[n_]:={False}==Union@Module[{fa=FactorInteger[n]},Table[j[fa[[i,1]],fa[[i,2]]],{i,1,Length[fa]}]];Select[Range[1000],!j[#]&]
A045643
Palindromic and divisible by 8.
Original entry on oeis.org
0, 8, 88, 232, 272, 424, 464, 616, 656, 696, 808, 848, 888, 2112, 2552, 2992, 4224, 4664, 6336, 6776, 8008, 8448, 8888, 21112, 21312, 21512, 21712, 21912, 23032, 23232, 23432, 23632, 23832, 25152, 25352, 25552, 25752, 25952, 27072, 27272, 27472
Offset: 1
-
palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]];Select[ 8Range[0,3500],palQ] (* Harvey P. Dale, Jun 06 2011 *)
Select[8*Range[0, 3500],PalindromeQ] (* Harvey P. Dale, Feb 17 2023 *)
A047592
Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
-
[ n: n in [0..100] | n mod 8 in {1, 2, 3, 4, 5, 6, 7} ]; // Vincenzo Librandi, Dec 25 2010
-
A047592:=n->8*floor(n/7)+[1, 2, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047592(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
-
Complement[Range[88], 8Range[11]] (* Harvey P. Dale, Jan 22 2011 *)
CoefficientList[Series[(1 + x)*(1 + x^2)*(1 + x^4)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
-
a(n)=n-1+floor((n+6)/7) \\ Benoit Cloitre, Jul 11 2009
A094053
Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.
Original entry on oeis.org
0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1
From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
0;
1, 0;
2, 2, 0;
3, 4, 3, 0;
4, 6, 6, 4, 0;
5, 8, 9, 8, 5, 0;
(...)
If an additional 0 was added at the beginning, this would become:
0;
0, 1;
0, 2, 2;
0, 3, 4; 3;
0, 4, 6, 6, 4;
0, 5, 8, 9, 8, 5;
... (End)
- W. Harter, Principles of Symmetry, Dynamics, Spectroscopy, Wiley, 1993, Ch. 5, page 345-346.
- B. Klee, Quantum Angular Momentum Matrices, Wolfram Demonstrations Project, 2016.
- J. Schwinger, On Angular Momentum , Cambridge: Harvard University, Nuclear Development Associates, Inc., 1952.
T(n,k) for values of k:
A005843 (k=2),
A008585 (k=3),
A008586 (k=4),
A008587 (k=5),
A008588 (k=6),
A008589 (k=7),
A008590 (k=8),
A008591 (k=9),
A008592 (k=10),
A008593 (k=11),
A008594 (k=12),
A008595 (k=13),
A008596 (k=14),
A008597 (k=15),
A008598 (k=16),
A008599 (k=17),
A008600 (k=18),
A008601 (k=19),
A008602 (k=20).
-
/* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
-
Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
-
{for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017
A119457
Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Triangle begins as:
1;
2, 2;
3, 4, 3;
4, 6, 6, 5;
5, 8, 9, 10, 8;
6, 10, 12, 15, 16, 13;
7, 12, 15, 20, 24, 26, 21;
8, 14, 18, 25, 32, 39, 42, 34;
9, 16, 21, 30, 40, 52, 63, 68, 55;
10, 18, 24, 35, 48, 65, 84, 102, 110, 89;
11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
-
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
[A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
(* First program *)
T[n_, 1] := n;
T[n_ /; n > 1, 2] := 2 n - 2;
T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
(* Second program *)
A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
def A119457(n,k): return (n-k+1)*fibonacci(k+1)
print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
A212703
Main transitions in systems of n particles with spin 4.
Original entry on oeis.org
8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212702,
A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).
-
LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
-
Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
-
a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015
A047393
Numbers that are congruent to {0, 1} mod 8.
Original entry on oeis.org
0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, 64, 65, 72, 73, 80, 81, 88, 89, 96, 97, 104, 105, 112, 113, 120, 121, 128, 129, 136, 137, 144, 145, 152, 153, 160, 161, 168, 169, 176, 177, 184, 185, 192, 193, 200, 201, 208, 209, 216, 217, 224, 225, 232
Offset: 1
-
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+8 od: seq(a[n], n=0..58); # Zerinvary Lajos, Mar 16 2008
-
Riffle[#, # + 1] & [Range[0, 400, 8]] (* Paolo Xausa, Mar 11 2025 *)
-
forstep(n=0,200,[1,7],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
a(n) = 4*n - 11/2 - 3*(-1)^n/2; \\ David Lovler, Jul 25 2022
-
def A047393(n): return n-1<<2 if n&1 else (n<<2)-7 # Chai Wah Wu, Mar 11 2025
Comments