A162443
Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.
Original entry on oeis.org
5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1
The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle
A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to
A008956.
-
a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
# End program 1
nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A160476
The first right hand column of the Zeta and Lambda triangles.
Original entry on oeis.org
1, 10, 210, 420, 4620, 60060, 60060, 2042040, 116396280, 581981400, 13385572200, 13385572200, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200
Offset: 2
-
nmax := 20; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: for n from 2 to nmax do a1(n) := p(n)*2^(2*n-3)/(3*factorial(2*n-1)) od: seq(a1(n), n=2..nmax);
# End first program (program edited, Johannes W. Meijer, Sep 20 2012)
nmax1 := nmax: for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax1 do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax1 do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax1 do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax1 do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax1 do a2(n) := p(n)/(6*factorial(2*n-2)) od: seq(a2(n), n=2..nmax1);
# End second program (program edited, Johannes W. Meijer, Sep 20 2012)
A161736
Denominators of the column sums of the BG2 matrix.
Original entry on oeis.org
1, 9, 75, 1225, 19845, 160083, 1288287, 41409225, 1329696225, 10667118605, 85530896451, 1371086188563, 21972535073125, 176021737014375, 1409850293610375, 90324408810638025, 5786075364399106425, 46326420401234675625, 370882277949065911875, 5938020471163465810125
Offset: 2
sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
-
[Denominator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
-
nmax := 18; for n from 0 to nmax do A001818(n) := (doublefactorial(2*n-1))^2 od: for n from 0 to nmax do A008956(n, 0):=1 od: for n from 0 to nmax do A008956(n, n) := A001818(n) od: for n from 1 to nmax do for m from 1 to n-1 do A008956(n, m) := (2*n-1)^2*A008956(n-1, m-1) + A008956(n-1, m) od: od: for n from 1 to nmax do for m from 0 to n do s(n, m):=0; s(n, m) := s(n, m)+ sum((-1)^k1*A008956(n, n-k1), k1=0..n-m): od: sb1(n+1) := sum(s(n, k1), k1=1..n) * 2/A001818(n); od: seq(sb1(n), n=2..nmax); # End program 1
nmax1 := nmax; for n from 0 to nmax1 do A001147(n):= doublefactorial(2*n-1) od: for n from 0 to nmax1/2 do A133221(2*n+1) := A001147(n); A133221(2*n) := A001147(n) od: for n from 0 to nmax1 do A002474(n) := 2^(2*n+1)*n!*(n+1)! od: for n from 1 to nmax1 do A161738(n) := ((product((2*n-3-2*k1), k1=0..floor(n/2-1)))) od: for n from 2 to nmax1 do sb2(n) := A002474(n-2) / (A161738(n)*A133221(n-1))^2 od: seq(sb2(n), n=2..nmax1); # End program 2
# Above Maple programs edited by Johannes W. Meijer, Sep 25 2012
r := n -> (1/Pi)*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> numer(simplify(r(n))):
seq(a(n), n = 1..21); # Peter Luschny, Feb 12 2025
-
sb[2]=2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2; Table[sb[n] // Denominator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
-
{a(n) = if( n<2, 0, n--; numerator( binomial( 2*n, n)^2 * n / 2^(n+1) ))}; /* Michael Somos, May 09 2011 */
A162448
Numerators of the column sums of the LG1 matrix.
Original entry on oeis.org
-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2
The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
See
A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle
A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to
A008956.
The pg(n) and hg(n) sequences lead to
A160476.
-
nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
# End program 1
nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A160479
The ZL(n) sequence of the Zeta and Lambda triangles A160474 and A160487.
Original entry on oeis.org
10, 21, 2, 11, 13, 1, 34, 57, 5, 23, 1, 1, 29, 31, 2, 1, 37, 1, 41, 301, 1, 47, 1, 1, 53, 3, 1, 59, 61, 1, 2, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 505, 103, 1, 107, 109, 11, 113, 1, 1, 1, 1, 1, 1, 127, 2, 131
Offset: 3
The cnf1(n, k) are the central factorial numbers
A008955.
The cnf2(n, k) are the central factorial numbers
A008956.
-
nmax := 65; for n from 0 to nmax do cfn1(n, 0):=1: cfn1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do cfn1(n, k) := cfn1(n-1, k-1)*n^2 + cfn1(n-1, k) end do: end do: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 3 to nmax+1 do ZL(n):=cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax+1);
# End program 1 (program edited by Johannes W. Meijer, Oct 25 2012)
nmax1 := nmax; for n from 0 to nmax1 do cfn2(n, 0) :=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!) end do: for n from 1 to nmax1 do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax1-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax1 do cm(n) := c(n)/(6*(2*n)!) end do: for n from 3 to nmax1+1 do ZL(n) := cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax1+1);
# End program 2 (program edited by Johannes W. Meijer, Sep 20 2012)
nmax2 := nmax: A000040 := proc(n): ithprime(n) end: A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: A128060 := proc(n) local n1: n1:=2*n-1: if type(n1, prime) then A128060(n) := 1 else A128060(n) := n1 fi: end: for n from 1 to nmax2 do A217983(n) := 1 od: for n from 1 to nmax2 do for n1 from 1 to floor(log[A000040(n)](nmax2)) do A217983(A130290(n) * A000040(n)^n1) := A000040(n) od: od: ZL := proc(n): (2*n-1)*(A217983(n-1)/A128060(n)) end: seq(ZL(n), n=3..nmax2+1);
# End program 3 (program added by Johannes W. Meijer, Oct 25 2012)
A002197
Numerators of coefficients for numerical integration.
Original entry on oeis.org
1, 17, 367, 27859, 1295803, 5329242827, 25198857127, 11959712166949, 11153239773419941, 31326450596954510807, 3737565567167418110609, 2102602044094540855003573, 189861334343507894443216783
Offset: 0
a(2) = numer(((1-2^1)*(-1)*((1/6)/2)*(9) + (1-2^3)*(1)*((-1/30)/4)*(10) + (1-2^5)*(-1)*((1/42)/6)*(1))/(2*4^2*5!)) so a(2) = 367. - _Johannes W. Meijer_, Jan 27 2009
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..100
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
Factor of the LS1[-2,n] matrix coefficients in
A160487.
-
nmax:=13: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od: for n from 0 to nmax do Delta(n) := sum((1-2^(2*k1-1)) * (-1)^(k1) * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> numer(Delta(n)): seq(a(n), n=0..nmax-1); # Johannes W. Meijer, Jan 27 2009, revised Sep 21 2012
-
CoefficientList[Series[1/x - 1/Sqrt[x]/ArcSin[Sqrt[x]], {x, 0, 12}], x] // Numerator (* Jean-François Alcover, Jul 05 2011, after Vladeta Jovovic *)
-
a(n):=(sum(binomial(2*n+k-1,2*n-2)*sum((binomial(k+1,j)*sum((2*i-j)^(2*n+j)*binomial(j,i)*(-1)^(n-i),i,0,j/2))/(2^(j-1)*(2*n+j)!),j,1,k+1),k,0,2*n-1))/(2*n-1);
makelist(num(a(n)),n,0,10); /* Vladimir Kruchinin, May 16 2013 */
A002198
Denominators of coefficients for numerical integration.
Original entry on oeis.org
24, 5760, 967680, 464486400, 122624409600, 2678117105664000, 64274810535936000, 149852129706639360000, 669659197233029971968000, 8839501403475995629977600000, 4879404774718749587747635200000
Offset: 0
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
Factor of the LS1[ -2,n] matrix coefficients in
A160487.
-
nmax:=10: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od:
for n from 0 to nmax do Delta(n) := add((1-2^(2*k1-1)) * (-1)^k1 * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> denom (Delta(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
A002453
Central factorial numbers: 2nd subdiagonal of A008958.
Original entry on oeis.org
1, 35, 966, 24970, 631631, 15857205, 397027996, 9931080740, 248325446061, 6208571999575, 155218222621826, 3880490869237710, 97012589464171291, 2425317596203339145, 60632965641474990456, 1515824372664398367880
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
- G. C. Greubel, Table of n, a(n) for n = 0..710
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to factorial numbers
- Index entries for linear recurrences with constant coefficients, signature (35,-259,225).
Right-hand column 2 in triangle
A008958.
-
List([0..20],n->(5^(2*n+4)-3^(2*n+5)+2)/384); # Muniru A Asiru, Dec 20 2018
-
[(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // G. C. Greubel, Jul 04 2019
-
A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # Simon Plouffe (from his 1992 dissertation).
-
CoefficientList[Series[1/((1-x)(1-9x)(1-25x)),{x,0,20}],x] (* or *) LinearRecurrence[{35,-259,225},{1,35,966},20] (* Harvey P. Dale, Feb 25 2015 *)
-
vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ G. C. Greubel, Jul 04 2019
-
[(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # G. C. Greubel, Jul 04 2019
A182867
Triangle read by rows: row n gives coefficients in expansion of Product_{i=1..n} (x - (2i)^2), highest powers first.
Original entry on oeis.org
1, 1, -4, 1, -20, 64, 1, -56, 784, -2304, 1, -120, 4368, -52480, 147456, 1, -220, 16368, -489280, 5395456, -14745600, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400, 1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400, 1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400, 1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
Offset: 0
Triangle begins:
1
1, -4
1, -20, 64
1, -56, 784, -2304
1, -120, 4368, -52480, 147456
1, -220, 16368, -489280, 5395456, -14745600
1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
1, -560, 119392, -12263680, 633721088, -15658639360, 157294854144, -416179814400
1, -816, 262752, -42828032, 3773223168, -177891237888, 4165906530304, -40683662475264, 106542032486400
1, -1140, 527136, -127959680, 17649505536, -1400415544320, 61802667606016, -1390437378293760, 13288048674471936, -34519618525593600
...
For example, for n=2, (x-4)(x-16) = x^2 - 20x + 64 => [1, -20, 64].
- T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
- T. L. Curtright, More on Rotations as Spin Matrix Polynomials, arXiv preprint arXiv:1506.04648 [math-ph], 2015.
-
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
for n from 0 to 10 do
t1:=eval(Q(2*n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od:
# Using a bivariate generating function (adding a superdiagonal 1,0,0, ...):
gf := (t + sqrt(1 + t^2))^x:
ser := series(gf, t, 20): ct := n -> coeff(ser, t, n):
T := (n, k) -> n!*coeff(ct(n), x, n - k):
EvenPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 0..n, 2)), n = 0..2*len-1, 2):
EvenPart(T, 6); # Peter Luschny, Mar 03 2024
A182971
Triangle read by rows: coefficients in expansion of Q(n) = (x-n^2)*(x-(n-2)^2)*(x-(n-4)^2)*...*(x-(1 or 2)^2), highest powers first.
Original entry on oeis.org
1, 1, -1, 1, -4, 1, -10, 9, 1, -20, 64, 1, -35, 259, -225, 1, -56, 784, -2304, 1, -84, 1974, -12916, 11025, 1, -120, 4368, -52480, 147456, 1, -165, 8778, -172810, 1057221, -893025, 1, -220, 16368, -489280, 5395456, -14745600, 1, -286, 28743, -1234948, 21967231, -128816766, 108056025, 1, -364, 48048, -2846272, 75851776, -791691264, 2123366400
Offset: 0
Triangle begins:
1
1, -1
1, -4
1, -10, 9
1, -20, 64
1, -35, 259, -225
1, -56, 784, -2304
1, -84, 1974, -12916, 11025
1, -120, 4368, -52480, 147456
1, -165, 8778, -172810, 1057221, -893025
1, -220, 16368, -489280, 5395456, -14745600
...
E.g. for n=5 Q(5) = (x-1^2)*(x-3^2)*(x-5^2) = x^3-35*x^2+259*x-225.
-
Q:= n -> if n mod 2 = 0 then sort(expand(mul(x-4*i^2,i=1..n/2)));
else sort(expand(mul(x-(2*i+1)^2,i=0..(n-1)/2))); fi;
for n from 0 to 12 do
t1:=eval(Q(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od:
Comments