cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 123 results. Next

A047240 Numbers that are congruent to {0, 1, 2} mod 6.

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32, 36, 37, 38, 42, 43, 44, 48, 49, 50, 54, 55, 56, 60, 61, 62, 66, 67, 68, 72, 73, 74, 78, 79, 80, 84, 85, 86, 90, 91, 92, 96, 97, 98, 102, 103, 104, 108, 109, 110, 114, 115, 116, 120, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Partial sums of 0,1,1,4,1,1,4,... - Paul Barry, Feb 19 2007
Numbers k such that floor(k/3) = 2*floor(k/6). - Bruno Berselli, Oct 05 2017

Crossrefs

Cf. similar sequences with formula n+i*floor(n/3) listed in A281899.

Programs

Formula

From Paul Barry, Feb 19 2007: (Start)
G.f.: x*(1 + x + 4*x^2)/((1 - x)*(1 - x^3)).
a(n) = 2*n - 3 - cos(2*n*Pi/3) + sin(2*n*Pi/3)/sqrt(3). (End)
a(n) = n-1 + 3*floor((n-1)/3). - Philippe Deléham, Apr 21 2009
a(n) = 6*floor(n/3) + (n mod 3). - Gary Detlefs, Mar 09 2010
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k)=2*3^k for k>0. - Philippe Deléham, Oct 22 2011.
a(n) = 2*n - 2 - A010872(n-1). - Wesley Ivan Hurt, Jul 07 2013
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(3*k) = 6*k-4, a(3*k-1) = 6*k-5, a(3*k-2) = 6*k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(3))*Pi/18 + log(2+sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Dec 14 2021
E.g.f.: 4 + exp(x)*(2*x - 3) - exp(-x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024

Extensions

Paul Barry formula adapted for offset 1 by Wesley Ivan Hurt, Jun 14 2016

A130486 a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 28, 29, 31, 34, 38, 43, 49, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 112, 113, 115, 118, 122, 127, 133, 140, 140, 141, 143, 146, 150, 155, 161, 168, 168, 169, 171, 174, 178, 183, 189, 196, 196, 197, 199, 202, 206
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 8, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* Michael De Vlieger, Apr 28 2018 *)
    Accumulate[PadRight[{},100,Range[0,7]]] (* Harvey P. Dale, Dec 21 2018 *)
  • PARI
    a(n) = sum(k=0, n, k % 8); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130486_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list()
    A130486_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 28*floor(n/8) + A010877(n)*(A010877(n) + 1)/2.
G.f.: (Sum_{k=1..7} k*x^k)/((1-x^8)*(1-x)).
G.f.: x*(1 - 8*x^7 + 7*x^8)/((1-x^8)*(1-x)^3).

A145784 Numbers with property that their number of prime factors counted with multiplicity is a multiple of 3.

Original entry on oeis.org

1, 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 64, 66, 68, 70, 75, 76, 78, 92, 96, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 144, 147, 148, 153, 154, 160, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 216, 222
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 19 2008

Keywords

Comments

A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 02 2024

Crossrefs

Cf. A001222, A010872, A373975 (characteristic function).
Cf. also A028260, A214195, A297845.

Programs

  • Haskell
    a145784 n = a145784_list !! (n-1)
    a145784_list = filter ((== 0) . a010872 . a001222) [1..]
    -- Reinhard Zumkeller, May 26 2012
    
  • Mathematica
    Join[{1}, Select[Range[2,230], Mod[Total[Transpose[FactorInteger[#]][[2]]], 3] == 0 &]] (* T. D. Noe, May 21 2012 *)
  • PARI
    isok(k) = !(bigomega(k) % 3); \\ Amiram Eldar, May 16 2025

Formula

A010872(A001222(a(n))) = 0.

A329903 a(n) = A156552(n) mod 3.

Original entry on oeis.org

0, 1, 2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2, 1, 0, 0, 1, 2, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 2, 0, 2, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 0, 1, 1, 2, 2, 2, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 2, 2, 1, 1, 1, 0, 2, 0, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2019

Keywords

Crossrefs

Cf. A329609 (gives positions of zeros).

Programs

  • Mathematica
    Array[Mod[#, 3] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 105] (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A329903(n) = (A156552(n)%3);

Formula

a(n) = A010872(A156552(n)) = A156552(n) mod 3.

A010881 Simple periodic sequence: n mod 12.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 0

Views

Author

Keywords

Comments

The value of the rightmost digit in the base-12 representation of n. - Hieronymus Fischer, Jun 11 2007

Examples

			a(27) = 3 since 27 = 12*2+3.
		

Crossrefs

Partial sums: A130490. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487, A130488, A130489.

Programs

Formula

From Hieronymus Fischer, May 31 2007: (Start)
a(n) = n mod 12.
Complex representation: a(n) = (1/12)*(1-r^n)*Sum_{k=1..11} k*Product_{m=1..11, m<>k} (1-r^(n-m)) where r = exp(Pi/6*i) = (sqrt(3)+i)/2 and i = sqrt(-1).
Trigonometric representation: a(n) = (512/3)^2*(sin(n*Pi/12))^2*Sum_{k=1..11} k*Product_{m=1..11, m<>k} (sin((n-m)*Pi/12))^2.
G.f.: (Sum_{k=1..11} k*x^k)/(1-x^12).
G.f.: x*(11*x^12-12*x^11+1)/((1-x^12)*(1-x)^2). (End)
From Hieronymus Fischer, Jun 11 2007: (Start)
a(n) = (n mod 2)+2*(floor(n/2) mod 6) = A000035(n)+2*A010875(A004526(n)).
a(n) = (n mod 3)+3*(floor(n/3) mod 4) = A010872(n)+3*A010873(A002264(n)).
a(n) = (n mod 4)+4*(floor(n/4) mod 3) = A010873(n)+4*A010872(A002265(n)).
a(n) = (n mod 6)+6*(floor(n/6) mod 2) = A010875(n)+6*A000035(A152467(n)).
a(n) = (n mod 2)+2*(floor(n/2) mod 2)+4*(floor(n/4) mod 3) = A000035(n)+2*A000035(A004526(n))+4*A010872(A002265(n)). (End)
a(A001248(k) + 17) = 6 for k>2. - Reinhard Zumkeller, May 12 2010
a(n) = A034326(n+1)-1. - M. F. Hasler, Sep 25 2014

A117373 Expansion of (1 - 3x)/(1 - x + x^2).

Original entry on oeis.org

1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1, -2, -3, -1, 2, 3, 1
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

Row sums of number triangle A117372.
Periodic sequence with period {1, -2, -3, -1, 2, 3}. - Philippe Deléham, Nov 03 2008

Crossrefs

Cf. A010872 (n mod 3), A010875 (n mod 6).

Programs

Formula

G.f.: (1 - 3x)/(1 - x + x^2).
a(n) = Sum_{k=0..n} (-1)^(n-k)*(C(k,n-k) + 3*C(k, n-k-1)).
a(n) = a(n-1) - a(n-2); a(0)=1, a(1)=-2. - Philippe Deléham, Nov 03 2008
a(n) = A010892(n) - 3*A010892(n-1). - R. J. Mathar, Sep 14 2013
a(n) = cos(n*Pi/3) - 5*sin(n*Pi/3)/sqrt(3). - Andres Cicuttin, Apr 06 2016
a(n) = ((n mod 3)^2 - 4*(n mod 3) + 1)*(-1)^floor(n/3). - Luce ETIENNE, Nov 18 2017

A039969 An example of a d-perfect sequence: a(n) = Catalan(n) mod 3.

Original entry on oeis.org

1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

This is A006996 with all its terms repeated three times, except the initial term only twice. A006996 is a fixed point of the morphism 0 -> 000, 1 -> 120, 2 -> 210. [The original comment edited by Antti Karttunen, Aug 14 2017]
Equals Catalan(n) mod 3. (Cf. A000108.) - Paul D. Hanna, Jun 20 2003 [confirmed by Christian G. Bower, Jun 12 2005]
Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

Crossrefs

Cf. A006996 (trisection).

Programs

  • Magma
    [Catalan(n) mod 3: n in [1..80]]; // Vincenzo Librandi, Jul 14 2015
    
  • Maple
    seq(binomial(2*n, n)/(n+1) mod 3, n = 0 .. 100); # Robert Israel, Sep 20 2015
  • Mathematica
    Take[ Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 0}, 2 -> {2, 1, 0}, 0 -> {0, 0, 0}}] &, {1}, 4] /. {1 -> {1, 1, 1}, 2 -> {2, 2, 2}, 0 -> {0, 0, 0}}], {2, 106}] (* or *)
    Table[ Mod[ Binomial[ 2n, n]/(n + 1), 3], {n, 0, 104}] (* Robert G. Wilson v, Sep 09 2005 *)
    Mod[CatalanNumber[Range[0,110]],3] (* Harvey P. Dale, Oct 23 2017 *)
  • PARI
    A039969(n) = ((binomial(2*n, n)/(n+1))%3); \\ Antti Karttunen, Aug 13 2017

Formula

a(n) = ((-1)^(n+1)*A001006(n-1)) mod 3, for n>0. - Christian G. Bower, Jun 12 2005
a(n) = a(n-1) if n == 0 or 1 (mod 3). a(n) = 0 if n == 5,6, or 7 (mod 9). - Robert Israel, Sep 20 2015
a(3n) = A006996(n). - Antti Karttunen, Aug 14 2017
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 0 (Burns, 2016). - Amiram Eldar, Jan 26 2021

Extensions

More terms from Christian G. Bower, Jun 12 2005
Offset corrected from 1 to 0 by Antti Karttunen, Aug 13 2017

A130487 a(n) = Sum_{k=0..n} (k mod 9) (Partial sums of A010878).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 36, 37, 39, 42, 46, 51, 57, 64, 72, 72, 73, 75, 78, 82, 87, 93, 100, 108, 108, 109, 111, 114, 118, 123, 129, 136, 144, 144, 145, 147, 150, 154, 159, 165, 172, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 216, 217, 219, 222, 226
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j]=j mod 9, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,36];; for n in [11..71] do a[n]:=a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,36]; [n le 10 select I[n] else Self(n-1) + Self(n-9) - Self(n-10): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[PadRight[{},120,Range[0,8]]] (* Harvey P. Dale, Dec 19 2018 *)
    Accumulate[Mod[Range[0,100],9]] (* Harvey P. Dale, Oct 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 9); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130487_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3)).list()
    A130487_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 36*floor(n/9) + A010878(n)*(A010878(n) + 1)/2.
G.f.: (Sum_{k=1..8} k*x^k)/((1-x^9)*(1-x)).
G.f.: x*(1 - 9*x^8 + 8*x^9)/((1-x^9)*(1-x)^3).

A068907 Number of partitions of n modulo 3.

Original entry on oeis.org

1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 0, 2, 2, 2, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 2, 2, 2, 0, 2, 0, 0, 1, 1, 2, 0, 2, 1, 2, 2, 0, 1, 1, 2, 2, 2, 1, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0
Offset: 0

Views

Author

Henry Bottomley, Mar 05 2002

Keywords

Comments

Of the partitions of numbers from 1 to 100000: 33344 are 0, 33193 are 1 and 33463 are 2 modulo 3.

Crossrefs

Programs

Formula

a(n) = A010872(A000041(n)) = A068906(3, n)
a(n) = Pm(n,1) with Pm(n,k) = if kReinhard Zumkeller, Jun 09 2009

A100402 Digital root of 4^n.

Original entry on oeis.org

1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7
Offset: 0

Views

Author

Cino Hilliard, Dec 31 2004

Keywords

Comments

Equals A141725 mod 9. - Paul Curtz, Sep 15 2008
Sequence is the digital root of A016777. - Odimar Fabeny, Sep 13 2010
Digital root of the powers of any number congruent to 4 mod 9. - Alonso del Arte, Jan 26 2014
Period 3: repeat [1, 4, 7]. - Wesley Ivan Hurt, Aug 26 2014
From Timothy L. Tiffin, Dec 02 2023: (Start)
The period 3 digits of this sequence are the same as those of A070403 (digital root of 7^n) but the order is different: [1, 4, 7] vs. [1, 7, 4].
The digits in this sequence appear in the decimal expansions of the following rational numbers: 49/333, 490/333, 4900/333, .... (End)

Examples

			4^2 = 16, digitalroot(16) = 7, the third entry.
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) = 4^n mod 9. - Zerinvary Lajos, Nov 25 2009
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3) for n>2.
G.f.: (1+4*x+7*x^2)/ ((1-x)*(1+x+x^2)). (End)
a(n) = A010888(A000302(n)). - Michel Marcus, Aug 25 2014
a(n) = 3*A010872(n) + 1. - Robert Israel, Aug 25 2014
a(n) = 4 - 3*cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3). - Wesley Ivan Hurt, Jun 30 2016
a(n) = A153130(2n). - Timothy L. Tiffin, Dec 01 2023
a(n) = A010888(A001022(n)) = A010888(A009966(n)) = A010888(A009975(n)) = A010888(A009984(n)) = A010888(A087752(n)) = A010888(A121013(n)). - Timothy L. Tiffin, Dec 02 2023
a(n) = A010888(4*a(n-1)). - Stefano Spezia, Mar 20 2025
Previous Showing 31-40 of 123 results. Next