cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A350921 a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.

Formula

G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A098602 a(n) = A001652(n) * A046090(n).

Original entry on oeis.org

0, 12, 420, 14280, 485112, 16479540, 559819260, 19017375312, 646030941360, 21946034630940, 745519146510612, 25325704946729880, 860328449042305320, 29225841562491651012, 992818284675673829100, 33726595837410418538400, 1145711440187278556476512
Offset: 0

Views

Author

Charlie Marion, Oct 26 2004

Keywords

Comments

From Ron Knott, Nov 25 2013: (Start)
a(n) = 2*r*(r+1) which is also of form s(s+1) where the s is in A053141.
a(n) is an oblong number (A002378) which is twice another oblong number. (End)
2*a(n)+1 and 4*a(n)+1 are both square. - Paul Cleary, Jun 23 2014

Examples

			a(1) = 12 = 2(2*3) = 3*4, a(2) = 420 = 2(14*15) = 20*21.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(12*x/((1-x)*(x^2-34*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    2*Table[ Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Ray Chandler, Nov 10 2004, copied incorrect program from A029549, revised Jul 09 2015 *)
    RecurrenceTable[{a[n+3] == 35 a[n+2] - 35 a[n+1] + a[n], a[1] == 0, a[2] == 12, a[3] == 420}, a, {n, 1, 10}] (* Ron Knott, Nov 25 2013 *)
    LinearRecurrence[{35, -35, 1}, {0, 12, 420}, 25] (* T. D. Noe, Nov 25 2013 *)
    Table[(LucasL[4*n+2, 2] - 6)/16, {n,0,30}] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    concat(0, Vec(12*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
    
  • PARI
    {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
    for(n=0, 30, print1(round((Q(4*n+2) - 6)/16), ", ")) \\ G. C. Greubel, Jul 15 2018
    

Formula

a(n) = 2*A029549(n) = 2*A001109(n)*A001109(n+1).
a(n) = (A001653(n)^2 - 1)/2.
a(n) = A053141(n)^2 + A011900(n)^2 - 1.
For n>0, a(n) = A053141(2n) - 2*A001109(n-1)^2.
For n>0, a(n) = 3*(A001542(n)^2 - A001542(n-1)^2).
For n>0, a(n) = A053141(2n-1) + 2*(A001653(2n-1) - A001109(n-1)^2).
a(n+1) + a(n) = 3*A001542(n+1)^2.
a(n+1) - a(n) = A001542(2*n).
a(n+1)*a(n) = 4*(A001109(n)^4 - A001109(n)^2) = 4*A001110(n)*(A001110(n) - 1).
From Ron Knott, Nov 25 2013: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
G.f.: 12*x / ((1-x)*(x^2-34*x+1)). (End)
a(n) = (-6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n)+(3+2*sqrt(2))*(17+12*sqrt(2))^n)/16. - Colin Barker, Mar 02 2016

Extensions

More terms from Ray Chandler, Nov 10 2004
Corrected by Bill Lam (bill_lam(AT)myrealbox.com), Feb 27 2006

A111647 a(n) = A001541(n)*A001653(n+1)*A002315(n).

Original entry on oeis.org

1, 105, 20213, 3998709, 791704585, 156753394977, 31036379835581, 6145046450172525, 1216688160731724433, 240898110778299543129, 47696609245941810082565, 9443687732585695622131557
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 105 = 3*5*7.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
    

Formula

2*a(n) = A001109(3*n+1) + A001109(n+1).
a(n) = sqrt(A011900(2*n)*A046090(2*n)*A001109(2*n+1)).
a(n) = A001541(3*n) + 2*A001109(n)*A001541(n-1)*A001541(n).
For n>0, a(n) = A001652(3*n) - A053141(2*n)*A002315(n-1) - A001652(n-1).
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024

A107118 Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 19, 631, 21421, 727669, 24719311, 839728891, 28526062969, 969046412041, 32919051946411, 1118278719765919, 37988557420094821, 1290492673563457981, 43838762343737476519, 1489227427013510743651, 50589893756115627807601, 1718567160280917834714769
Offset: 1

Views

Author

Richard Choulet, Sep 18 2007

Keywords

Comments

The centered hexagonal numbers are given by 3*p^2 - 3*p + 1 while the centered triangular numbers are given by (3*r^2 + 3*r + 2)/2. A natural number is both of the above numbers if and only if there exist numbers p and r such that 2*(2p-1)^2 = (2*r+1)^2+1. The Diophantine equation X^2 = 2*Y^2 - 1 has the following solutions: X is given by 1, 7, 41, 239, ..., i.e., A002315, and Y is given by A001653. The first equation gives r with 0, 3, 20, 119, 6906, i.e., A001652, and p with 1, 3, 15, 85, 493, ..., i.e., A011900.

Crossrefs

Cf. A003215 (Centered hexagonal numbers), A005448 (Centered triangular numbers).

Programs

  • Mathematica
    a[n_] := 17*n - 7 + Sqrt[288*n^2 - 252*n + 45]; NestList[a, 1, 20] (* Stefan Steinerberger, Sep 18 2007 *)
    LinearRecurrence[{35,-35,1},{1,19,631},30] (* Harvey P. Dale, Jan 16 2016 *)
  • PARI
    Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-34*x+1)) + O(x^100)) \\ Colin Barker, Jan 02 2015

Formula

a(n+2) = 34*a(n+1) - a(n) - 14.
a(n+1) = 17*a(n) - 7 + sqrt(288*a(n)^2 - 252*a(n) + 45).
G.f.: h(z)=(z*(1-16*z+z^2))/((1-z)*(1-34*z+z^2)).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - Colin Barker, Jan 02 2015
a(n) = (14+(9+6*sqrt(2))*(17+12*sqrt(2))^(-n)+(9-6*sqrt(2))*(17+12*sqrt(2))^n)/32. - Colin Barker, Mar 02 2016

Extensions

More terms from Stefan Steinerberger, Sep 18 2007

A227026 Numbers k such that k!/m! is a triangular number for some m < k-1.

Original entry on oeis.org

3, 5, 6, 7, 11, 14, 15, 58, 85, 493, 638, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695
Offset: 1

Views

Author

Alex Ratushnyak, Jun 27 2013

Keywords

Comments

A011900 is a subsequence, except A011900(0)=1.
According to Melissen's comment in A097571, m > k-7.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 - 16 x - 8 x^2 - 3 x^3 - x^4 - 20 x^5 - 13 x^6 + 40 x^7 - 230 x^8 + 289 x^9 - 2276 x^10 + 1771 x^11 + 607 x^12 - 145 x^13) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 30}], x] (* Bruno Berselli, Jun 28 2013 *)

Formula

a(n) = 7a(n-1) - 7a(n-2) + a(n-3) for n > 14. - Charles R Greathouse IV, Jun 28 2013
G.f.: x * (3 -16*x -8*x^2 -3*x^3 -x^4 -20*x^5 -13*x^6 +40*x^7 -230*x^8 +289*x^9 -2276*x^10 +1771*x^11 +607*x^12 -145*x^13) / ((1-x)*(1-6*x+x^2)). - Bruno Berselli, Jun 28 2013

A355182 a(n) = t(n) - s(n) where s(n) = n*(n-1)/2 is the sum of the first n nonnegative integers and t(n) is the smallest sum of consecutive integers starting from n such that t(n) > s(n).

Original entry on oeis.org

1, 1, 4, 3, 1, 6, 3, 10, 6, 1, 10, 4, 15, 8, 21, 13, 4, 19, 9, 26, 15, 3, 22, 9, 30, 16, 1, 24, 8, 33, 16, 43, 25, 6, 35, 15, 46, 25, 3, 36, 13, 48, 24, 61, 36, 10, 49, 22, 63, 35, 6, 49, 19, 64, 33, 1, 48, 15, 64, 30, 81, 46, 10, 63, 26, 81, 43, 4, 61, 21, 80, 39, 100, 58, 15, 78, 34, 99
Offset: 1

Views

Author

Andrea La Rosa, Jun 23 2022

Keywords

Comments

Record high values of a(n)/n approach sqrt(2) and occur at values of n that are terms of A011900; a(A011900(k)) = A046090(k). - Jon E. Schoenfield, Jun 23 2022
It appears that the sequence 1,2,4,5,6,8,... (the largest integer in the t(n) sum) is A288998. - Michel Marcus, Jun 24 2022

Examples

			a(6) = -s(6) + t(6):
s(6) is the sum of the first 6 nonnegative integers = 6*5 / 2 = 15.
t(6) is the smallest sum k of consecutive integers starting from n = 6 such that k > s(6) = 15.
The first few sets of consecutive integers starting from 6 are
  {6}, whose elements add up to 6,
  {6, 7}, whose elements add up to 13,
  {6, 7, 8}, whose elements add up to 21,
  {6, 7, 8, 9}, whose elements add up to 30,
  ...
the smallest sum that is > 15 is 21, so t(6) = 21, so a(6) = -15 + 21 = 6.
		

Crossrefs

Programs

  • JavaScript
    function a(n) {
        var sum = 0;
        for (var i = 0; i < n; i++)
            sum -= i;
        while (sum <= 0)
            sum += i++;
        return sum;
    }
    
  • PARI
    a(n) = my(t=0, s=n*(n-1)/2, k=n); until (t > s, t += k; k ++); t-s; \\ Michel Marcus, Jun 24 2022
    
  • Python
    from math import isqrt
    def A355182(n): return ((m:=(isqrt(((k:=n*(n-1))<<3)+1)+1)>>1)*(m+1)>>1)-k # Chai Wah Wu, Jul 14 2022

Formula

From Jon E. Schoenfield, Jun 23 2022: (Start)
a(n) = t(n) - s(n) where
s(n) = n*(n-1)/2,
j = floor(sqrt(8*n^2 - 8*n + 1)),
m = ceiling(j/2) - n + 1, and
t(n) = (m*(m + 2*n - 1))/2. (End)

A358682 Numbers k such that 8*k^2 + 8*k - 7 is a square.

Original entry on oeis.org

1, 7, 43, 253, 1477, 8611, 50191, 292537, 1705033, 9937663, 57920947, 337588021, 1967607181, 11468055067, 66840723223, 389576284273, 2270616982417, 13234125610231, 77134136678971, 449570694463597, 2620290030102613, 15272169486152083, 89012726886809887, 518804191834707241
Offset: 1

Views

Author

Stefano Spezia, Nov 26 2022

Keywords

Comments

a(n) is the n-th almost cobalancing number of second type (see Tekcan and Erdem).

Examples

			a(2) = 7 is a term since 8*7^2 + 8*7 - 7 = 441 = 21^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-7,1},{1,7,43},24]

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 3.
a(n) = (3*(3 - 2*sqrt(2))^n*(2 + sqrt(2)) + 3*(2 - sqrt(2))*(3 + 2*sqrt(2))^n - 4)/8.
O.g.f.: x*(1 + x^2)/((1 - x)*(1 - 6*x + x^2)).
E.g.f.: (3*(2 + sqrt(2))*(cosh(3*x - 2*sqrt(2)*x) + sinh(3*x - 2*sqrt(2)*x)) + 3*(2 - sqrt(2))*(cosh(3*x + 2*sqrt(2)*x) + sinh(3*x + 2*sqrt(2)*x)) - 4*(cosh(x) + sinh(x)) - 8)/8.
a(n) = 3*A011900(n) - 2 = 6*A053142(n) + 1. - Hugo Pfoertner, Nov 26 2022

A309117 Number of perfect matchings on a triangular lattice of width 4 and length n.

Original entry on oeis.org

1, 1, 5, 15, 56, 203, 749, 2777, 10293, 38240, 141997, 527593, 1960029, 7282483, 27057400, 100531559, 373522965, 1387822193, 5156442953, 19158736256, 71184183353, 264484479633, 982690786037, 3651182836279, 13565952140920, 50404229548515, 187276671274621
Offset: 0

Views

Author

Sergey Perepechko, Jul 13 2019

Keywords

Crossrefs

Formula

G.f.: (1-z)*(1+z)*(1-z-5*z^2-z^3+z^4)/((1+z-3*z^2-3*z^3+z^4)*(1-3*z-3*z^2+z^3+z^4)).
Previous Showing 11-20 of 20 results.