cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 304 results. Next

A007774 Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118
Offset: 1

Views

Author

Luke Pebody (ltp1000(AT)hermes.cam.ac.uk)

Keywords

Comments

Every group of order p^a * q^b is solvable (Burnside, 1904). - Franz Vrabec, Sep 14 2008
Characteristic function for a(n): floor(omega(n)/2) * floor(2/omega(n)) where omega(n) is the number of distinct prime factors of n. - Wesley Ivan Hurt, Jan 10 2013

Examples

			20 is a term because 20 = 2^2*5 with two distinct prime divisors 2, 5.
		

Crossrefs

Subsequence of A085736; A256617 is a subsequence.
Row 2 of A125666.
Cf. A001358 (products of two primes), A014612 (products of three primes), A014613 (products of four primes), A014614 (products of five primes), where the primes are not necessarily distinct.
Cf. A006881, A046386, A046387, A067885 (product of exactly 2, 4, 5, 6 distinct primes respectively).

Programs

  • Haskell
    a007774 n = a007774_list !! (n-1)
    a007774_list = filter ((== 2) . a001221) [1..]
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Maple
    with(numtheory,factorset):f := proc(n) if nops(factorset(n))=2 then RETURN(n) fi; end;
  • Mathematica
    Select[Range[0,6! ],Length[FactorInteger[ # ]]==2&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
    Select[Range[120],PrimeNu[#]==2&] (* Harvey P. Dale, Jun 03 2020 *)
  • PARI
    is(n)=omega(n)==2 \\ Charles R Greathouse IV, Apr 01 2013
    
  • Python
    from sympy import primefactors
    A007774_list = [n for n in range(1,10**5) if len(primefactors(n)) == 2] # Chai Wah Wu, Aug 23 2021

Extensions

Expanded definition. - N. J. A. Sloane, Aug 22 2021

A014311 Numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 131, 133, 134, 137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168, 176, 193, 194, 196, 200, 208, 224, 259, 261, 262, 265, 266, 268, 273, 274, 276, 280, 289, 290, 292, 296, 304
Offset: 1

Views

Author

Al Black (gblack(AT)nol.net)

Keywords

Comments

Equivalently, sums of three distinct powers of 2.
Appears to give all n such that 64 is the highest power of 2 dividing A005148(n). - Benoit Cloitre, Jun 22 2002
From Gus Wiseman, Oct 05 2020: (Start)
These are numbers k such that the k-th composition in standard order has length 3. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. The sequence together with the corresponding standard compositions begins:
7: (1,1,1) 44: (2,1,3) 97: (1,5,1)
11: (2,1,1) 49: (1,4,1) 98: (1,4,2)
13: (1,2,1) 50: (1,3,2) 100: (1,3,3)
14: (1,1,2) 52: (1,2,3) 104: (1,2,4)
19: (3,1,1) 56: (1,1,4) 112: (1,1,5)
21: (2,2,1) 67: (5,1,1) 131: (6,1,1)
22: (2,1,2) 69: (4,2,1) 133: (5,2,1)
25: (1,3,1) 70: (4,1,2) 134: (5,1,2)
26: (1,2,2) 73: (3,3,1) 137: (4,3,1)
28: (1,1,3) 74: (3,2,2) 138: (4,2,2)
35: (4,1,1) 76: (3,1,3) 140: (4,1,3)
37: (3,2,1) 81: (2,4,1) 145: (3,4,1)
38: (3,1,2) 82: (2,3,2) 146: (3,3,2)
41: (2,3,1) 84: (2,2,3) 148: (3,2,3)
42: (2,2,2) 88: (2,1,4) 152: (3,1,4)
(End)

Crossrefs

Cf. A038465 (base 3), A038471 (base 4), A038475 (base 5).
Cf. A081091 (primes), A212190 (squares), A212192 (triangular numbers), A173589 (Fibbinary).
Cf. A057168.
Cf. A000079, A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hammingweight = 1, 2, ..., 9).
A000217(n-2) counts compositions into three parts.
A001399(n-3) = A069905(n) = A211540(n+2) counts the unordered case.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts the unordered strict case.
A001399(n-6)*6 = A069905(n-3)*6 = A211540(n-1)*6 counts the strict case.
A014612 is an unordered version, with strict case A007304.
A337453 is the strict case.
A337461 counts the coprime case.
A033992 lists numbers divisible by exactly three different primes.
A323024 lists numbers with exactly three different prime multiplicities.

Programs

  • C
    unsigned hakmem175(unsigned x) {
        unsigned s, o, r;
        s = x & -x;  r = x + s;
        o = r ^ x;  o = (o >> 2) / s;
        return r | o;
    }
    unsigned A014311(int n) {
        if (n == 1) return 7;
        return hakmem175(A014311(n - 1));
    }  // Peter Luschny, Jan 01 2014
    
  • Haskell
    a014311 n = a014311_list !! (n-1)
    a014311_list = [2^x + 2^y + 2^z |
                    x <- [2..], y <- [1..x-1], z <- [0..y-1]]
    -- Reinhard Zumkeller, May 03 2012
    
  • Mathematica
    Select[Range[200], (Count[IntegerDigits[#, 2], 1] == 3)&]
    nn = 8; Flatten[Table[2^i + 2^j + 2^k, {i, 2, nn}, {j, 1, i - 1}, {k, 0, j - 1}]] (* T. D. Noe, Nov 05 2013 *)
  • PARI
    for(n=0,10^3,if(hammingweight(n)==3,print1(n,", "))); \\ Joerg Arndt, Mar 04 2014
    
  • PARI
    print1(t=7);for(i=2,50,print1(","t=A057168(t))) \\ M. F. Hasler, Aug 27 2014
    
  • Python
    A014311_list = [2**a+2**b+2**c for a in range(2,6) for b in range(1,a) for c in range(b)] # Chai Wah Wu, Jan 24 2021
    
  • Python
    from itertools import islice
    def A014311_gen(): # generator of terms
        yield (n:=7)
        while True: yield (n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b)
    A014311_list = list(islice(A014311_gen(),20)) # Chai Wah Wu, Mar 10 2025
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A014311(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<Chai Wah Wu, Mar 10 2025

Formula

A000120(a(n)) = 3. - Reinhard Zumkeller, May 03 2012
Start with A084468. If n is in sequence, then 2n is too. - Ralf Stephan, Aug 16 2013
a(n+1) = A057168(a(n)). - M. F. Hasler, Aug 27 2014
a(n) = 2^A056558(n-1) + 2^A194848(n-1) + 2^A194847(n-1). - Ridouane Oudra, Sep 06 2020
Sum_{n>=1} 1/a(n) = A367110 = 1.428591545852638123996854844400537952781688750906133068397189529775365950039... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

Extensions

Extension and program by Olivier Gérard

A046306 Numbers that are divisible by exactly 6 primes with multiplicity.

Original entry on oeis.org

64, 96, 144, 160, 216, 224, 240, 324, 336, 352, 360, 400, 416, 486, 504, 528, 540, 544, 560, 600, 608, 624, 729, 736, 756, 784, 792, 810, 816, 840, 880, 900, 912, 928, 936, 992, 1000, 1040, 1104, 1134, 1176, 1184, 1188, 1215, 1224, 1232, 1260, 1312, 1320
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 6-almost primes. Products of exactly 6 primes (not necessarily distinct). Any 6-almost prime can be represented in several ways as a product of two 3-almost primes A014612 and in several ways as a product of three semiprimes A001358. - Jonathan Vos Post, Dec 11 2004

Crossrefs

Cf. A046305, A120047 (number of 6-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), this sequence (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).

Programs

  • Mathematica
    Select[Range[500], Plus @@ Last /@ FactorInteger[ # ] == 6 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[1400],PrimeOmega[#]==6&] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    is(n)=bigomega(n)==6 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import isqrt, prod
    from sympy import primepi, primerange, integer_nthroot
    def A046306(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,6)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 6.
a(n) ~ 120n log n / (log log n)^5. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(6,n). - R. J. Mathar, Jan 30 2019

A046308 Numbers that are divisible by exactly 7 primes counting multiplicity.

Original entry on oeis.org

128, 192, 288, 320, 432, 448, 480, 648, 672, 704, 720, 800, 832, 972, 1008, 1056, 1080, 1088, 1120, 1200, 1216, 1248, 1458, 1472, 1512, 1568, 1584, 1620, 1632, 1680, 1760, 1800, 1824, 1856, 1872, 1984, 2000, 2080, 2187, 2208, 2268, 2352, 2368, 2376
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 7-almost primes. Products of exactly 7 primes (not necessarily distinct). - Jonathan Vos Post, Dec 11 2004
Also, positions of 7 in A001222. - Zak Seidov, Oct 14 2012

Crossrefs

Cf. A120048 (number of 7-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), this sequence (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[900], Plus @@ Last /@ FactorInteger[ # ] == 7 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
  • PARI
    is(n)=bigomega(n)==7 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A046308(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with sum e_i = 7.
a(n) ~ 720n log n / (log log n)^6. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(7,n). - R. J. Mathar, Jan 30 2019

A046310 Numbers that are divisible by exactly 8 primes counting multiplicity.

Original entry on oeis.org

256, 384, 576, 640, 864, 896, 960, 1296, 1344, 1408, 1440, 1600, 1664, 1944, 2016, 2112, 2160, 2176, 2240, 2400, 2432, 2496, 2916, 2944, 3024, 3136, 3168, 3240, 3264, 3360, 3520, 3600, 3648, 3712, 3744, 3968, 4000, 4160, 4374, 4416, 4536, 4704, 4736
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 8-almost primes. Products of exactly 8 primes (not necessarily distinct). Any 8-almost prime can be represented in several ways as a product of two 4-almost primes A014613 and in several ways as a product of four semiprimes A001358. - Jonathan Vos Post, Dec 11 2004
Odd terms are in A046321; first odd term is a(64)=6561=3^8. - Zak Seidov, Feb 08 2016

Crossrefs

Cf. A046309, A120049 (number of 8-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), this sequence (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).
Cf. A046321.

Programs

  • Maple
    A046310 := proc(n)
        option remember;
        if n = 1 then
            2^8 ;
        else
            for a from procname(n-1)+1 do
                if numtheory[bigomega](a) = 8 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A046310(n),n=1..30) ; # R. J. Mathar, Dec 21 2018
  • Mathematica
    Select[Range[1600], Plus @@ Last /@ FactorInteger[ # ] == 8 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[5000],PrimeOmega[#]==8&]  (* Harvey P. Dale, Apr 19 2011 *)
  • PARI
    is(n)=bigomega(n)==8 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A046310(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Product p_i^e_i with Sum e_i = 8.
a(n) ~ 5040n log n / (log log n)^7. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(8,n). - R. J. Mathar, Jan 30 2019

A046314 Numbers that are divisible by exactly 10 primes with multiplicity.

Original entry on oeis.org

1024, 1536, 2304, 2560, 3456, 3584, 3840, 5184, 5376, 5632, 5760, 6400, 6656, 7776, 8064, 8448, 8640, 8704, 8960, 9600, 9728, 9984, 11664, 11776, 12096, 12544, 12672, 12960, 13056, 13440, 14080, 14400, 14592, 14848, 14976, 15872, 16000, 16640
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 10-almost primes. Products of exactly 10 primes (not necessarily distinct). Any 10-almost prime can be represented in several ways as a product of two 5-almost primes A014614 and in several ways as a product of five semiprimes A001358. - Jonathan Vos Post, Dec 11 2004

Crossrefs

Cf. A046313, A120051 (number of 10-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), this sequence (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[5000], Plus @@ Last /@ FactorInteger[ # ] == 10 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[17000],PrimeOmega[#]==10&] (* Harvey P. Dale, Jun 23 2018 *)
  • PARI
    is(n)=bigomega(n)==10 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046314(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,10)))
        return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 10.
a(n) ~ 362880n log n / (log log n)^9. - Charles R Greathouse IV, May 06 2013

A046312 Numbers that are divisible by exactly 9 primes with multiplicity.

Original entry on oeis.org

512, 768, 1152, 1280, 1728, 1792, 1920, 2592, 2688, 2816, 2880, 3200, 3328, 3888, 4032, 4224, 4320, 4352, 4480, 4800, 4864, 4992, 5832, 5888, 6048, 6272, 6336, 6480, 6528, 6720, 7040, 7200, 7296, 7424, 7488, 7936, 8000, 8320, 8748, 8832, 9072, 9408
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Also called 9-almost primes. Products of exactly 9 primes (not necessarily distinct). - Jonathan Vos Post, Dec 11 2004

Crossrefs

Cf. A046311, A120050 (number of 9-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), this sequence (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[2200], Plus @@ Last /@ FactorInteger[ # ] == 9 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[10000],PrimeOmega[#]==9&] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    is(n)=bigomega(n)==9 \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046312(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,9)))
        return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 9.
a(n) ~ 40320n log n / (log log n)^8. - Charles R Greathouse IV, May 06 2013

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A220377 Number of partitions of n into three distinct and mutually relatively prime parts.

Original entry on oeis.org

1, 0, 2, 1, 3, 1, 6, 1, 7, 3, 7, 3, 14, 3, 15, 6, 14, 6, 25, 6, 22, 10, 25, 9, 42, 8, 34, 15, 37, 15, 53, 13, 48, 22, 53, 17, 78, 17, 65, 30, 63, 24, 99, 24, 88, 35, 84, 30, 126, 34, 103, 45, 103, 38, 166, 35, 124, 57, 128, 51, 184, 44, 150, 67, 172, 52, 218
Offset: 6

Views

Author

Carl Najafi, Dec 13 2012

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005117 (strict), A014612 (triples), and A302696 (coprime). - Gus Wiseman, Oct 14 2020

Examples

			For n=10 we have three such partitions: 1+2+7, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 14 2020: (Start)
The a(6) = 1 through a(20) = 15 triples (empty column indicated by dot, A..H = 10..17):
321  .  431  531  532  731  543  751  743  753  754  971  765  B53  875
        521       541       651       752  951  853  B51  873  B71  974
                  721       732       761  B31  871  D31  954  D51  A73
                            741       851       952       972       A91
                            831       941       B32       981       B54
                            921       A31       B41       A71       B72
                                      B21       D21       B43       B81
                                                          B52       C71
                                                          B61       D43
                                                          C51       D52
                                                          D32       D61
                                                          D41       E51
                                                          E31       F41
                                                          F21       G31
                                                                    H21
(End)
		

Crossrefs

A023022 is the 2-part version.
A101271 is the relative prime instead of pairwise coprime version.
A220377*6 is the ordered version.
A305713 counts these partitions of any length, with Heinz numbers A302797.
A307719 is the non-strict version.
A337461 is the non-strict ordered version.
A337563 is the case with no 1's.
A337605 is the pairwise non-coprime instead of pairwise coprime version.
A001399(n-6) counts strict 3-part partitions, with Heinz numbers A007304.
A008284 counts partitions by sum and length, with strict case A008289.
A318717 counts pairwise non-coprime strict partitions.
A326675 ranks pairwise coprime sets.
A327516 counts pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length@Select[ IntegerPartitions[ n, {3}], #[[1]] != #[[2]] != #[[3]] && GCD[#[[1]], #[[2]]] == 1 && GCD[#[[1]], #[[3]]] == 1 && GCD[#[[2]], #[[3]]] == 1 &], {n, 6, 100}]
    Table[Count[IntegerPartitions[n,{3}],?(CoprimeQ@@#&&Length[ Union[#]] == 3&)],{n,6,100}] (* _Harvey P. Dale, May 22 2020 *)
  • PARI
    a(n)=my(P=partitions(n));sum(i=1,#P,#P[i]==3&&P[i][1]Charles R Greathouse IV, Dec 14 2012

Formula

a(n > 2) = A307719(n) - 1. - Gus Wiseman, Oct 15 2020

A033942 Positive integers with at least 3 prime factors (counted with multiplicity).

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Keywords

Comments

A001055(a(n)) > 2; e.g., for a(3)=18 there are 4 factorizations: 1*18 = 2*9 = 2*3*3 = 3*6. - Reinhard Zumkeller, Dec 29 2001
A001222(a(n)) > 2; A054576(a(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that no permutation of all divisors exists with coprime adjacent elements: A109810(a(n))=0. - Reinhard Zumkeller, May 24 2010
A211110(a(n)) > 3. - Reinhard Zumkeller, Apr 02 2012
A060278(a(n)) > 0. - Reinhard Zumkeller, Apr 05 2013
Volumes of rectangular cuboids with each side > 1. - Peter Woodward, Jun 16 2015
If k is a term then so is k*m for m > 0. - David A. Corneth, Sep 30 2020
Numbers k with a pair of proper divisors of k, (d1,d2), such that d1 < d2 and gcd(d1,d2) > 1. - Wesley Ivan Hurt, Jan 01 2021

Crossrefs

Cf. A014612.
A101040(a(n))=0.
A033987 is a subsequence; complement of A037143. - Reinhard Zumkeller, May 24 2010
Subsequence of A080257.
See also A002808 for 'Composite numbers' or 'Divisible by at least 2 primes'.

Programs

  • Haskell
    a033942 n = a033942_list !! (n-1)
    a033942_list = filter ((> 2) . a001222) [1..]
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Maple
    with(numtheory): A033942:=n->`if`(bigomega(n)>2, n, NULL): seq(A033942(n), n=1..200); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Select[ Range[150], Plus @@ Last /@ FactorInteger[ # ] > 2 &] (* Robert G. Wilson v, Oct 12 2005 *)
    Select[Range[150],PrimeOmega[#]>2&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    is(n)=bigomega(n)>2 \\ Charles R Greathouse IV, May 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) > 2
    print([k for k in range(145) if ok(k)]) # Michael S. Branicky, Sep 10 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A033942(n):
        def f(x): return int(n+primepi(x)+sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Numbers of the form Product p_i^e_i with Sum e_i >= 3.
a(n) ~ n. - Charles R Greathouse IV, May 04 2013

Extensions

Corrected by Patrick De Geest, Jun 15 1998
Previous Showing 51-60 of 304 results. Next