A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A081578
Pascal-(1,3,1) array.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 5, 9, 13, 17, ... A016813;
1, 9, 33, 73, 129, ... A081585;
1, 13, 73, 245, 593, ... A081586;
1, 17, 129, 593, 1921, ...
As a triangle this begins:
1;
1, 1;
1, 5, 1;
1, 9, 9, 1;
1, 13, 33, 13, 1;
1, 17, 73, 73, 17, 1;
1, 21, 129, 245, 129, 21, 1;
1, 25, 201, 593, 593, 201, 25, 1;
1, 29, 289, 1181, 1921, 1181, 289, 29, 1;
1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1;
1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
a081578 n k = a081578_tabl !! n !! k
a081578_row n = a081578_tabl !! n
a081578_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A015552
a(n) = 6*a(n-1) + 7*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 6, 43, 300, 2101, 14706, 102943, 720600, 5044201, 35309406, 247165843, 1730160900, 12111126301, 84777884106, 593445188743, 4154116321200, 29078814248401, 203551699738806, 1424861898171643, 9974033287201500, 69818233010410501, 488727631072873506
Offset: 0
G.f. = x + 6*x^2 + 43*x^3 + 300*x^4 + 2101*x^5 + 14706*x^6 + 102943*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (6,7).
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[Round(7^n/8): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(7^n/8),n=0..25); # Mircea Merca, Dec 28 2010
-
k=0;lst={k};Do[k=7^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[(7^n - (-1)^n)/8, {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
-
{a(n) = if ( n<0, 0, (7^n - (-1)^n) / 8)};
-
[lucas_number1(n,6,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015540
a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 5, 31, 185, 1111, 6665, 39991, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 11194880585, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 3133850091482551, 18803100548895305, 112818603293371831
Offset: 0
G.f. = x + 5*x^2 + 31*x^3 + 185*x^4 + 1111*x^5 + 6665*x^6 + 39991*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- Index entries for linear recurrences with constant coefficients, signature (5,6).
-
[Floor(6^n/7-(-1)^n/7): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(6^n/7),n=0..25); # Mircea Merca, Dec 28 2010
-
k=0; lst={k}; Do[k = 6^n-k; AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[x / ((1 - 6 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
LinearRecurrence[{5,6},{0,1},30] (* Harvey P. Dale, May 12 2015 *)
-
my(x='x+O('x^30)); concat([0], Vec(x/((1-6*x)*(1+x)))) \\ G. C. Greubel, Jan 24 2018
-
a(n) = round(6^n/7); \\ Altug Alkan, Sep 05 2018
-
[lucas_number1(n,5,-6) for n in range(21)] # Zerinvary Lajos, Apr 24 2009
A109500
Number of closed walks of length n on the complete graph on 6 nodes from a given node.
Original entry on oeis.org
1, 0, 5, 20, 105, 520, 2605, 13020, 65105, 325520, 1627605, 8138020, 40690105, 203450520, 1017252605, 5086263020, 25431315105, 127156575520, 635782877605, 3178914388020, 15894571940105, 79472859700520
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Christopher R. Kitching, Henri Kauhanen, Jordan Abbott, Deepthi Gopal, Ricardo Bermúdez-Otero, and Tobias Galla, Estimating transmission noise on networks from stationary local order, arXiv:2405.12023 [cond-mat.stat-mech], 2024. See p. 48.
- Index entries for linear recurrences with constant coefficients, signature (4,5).
-
[(5^n + 5*(-1)^n)/6: n in [0..30]]; // G. C. Greubel, Dec 30 2017
-
k=0;lst={k};Do[k=5^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[(1 - 4*x)/(1 - 4*x - 5*x^2), {x, 0, 50}], x] (* or *) Table[(5^n + 5*(-1)^n)/6, {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
-
for(n=0, 30, print1((5^n + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Dec 30 2017
A091533
Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 21, 15, 5, 8, 30, 53, 53, 30, 8, 13, 58, 124, 157, 124, 58, 13, 21, 109, 273, 417, 417, 273, 109, 21, 34, 201, 577, 1029, 1239, 1029, 577, 201, 34, 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55, 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89
Offset: 0
This triangle begins:
1;
1, 1;
2, 3, 2;
3, 7, 7, 3;
5, 15, 21, 15, 5;
8, 30, 53, 53, 30, 8;
13, 58, 124, 157, 124, 58, 13;
21, 109, 273, 417, 417, 273, 109, 21;
34, 201, 577, 1029, 1239, 1029, 577, 201, 34;
55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55;
89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89;
...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n<1, 1, add(add(T(n-i, k-j), j=0..i), i=1..2)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 14 2022
-
A091533[-2, n2_] = 0; A091533[n1_, -2] = 0; A091533[-1, n2_] = 0; A091533[n1_, -1] = 0; A091533[0, 0] = 1; A091533[n1_, n2_] := A091533[n1, n2] = A091533[n1 - 1, n2] + A091533[n1, n2 - 1] + A091533[n1 - 1, n2 - 1] + A091533[n1 - 2, n2] + A091533[n1, n2 - 2]; Table[A091533[x - y, y], {x, 0, 9}, {y, 0, x}] // Flatten (* Robert P. P. McKone, Jan 14 2022 *)
A015251
Gaussian binomial coefficient [ n,2 ] for q = -3.
Original entry on oeis.org
1, 7, 70, 610, 5551, 49777, 448540, 4035220, 36321901, 326882347, 2941985410, 26477735830, 238300021051, 2144698993717, 19302294530680, 173720640014440, 1563485792415001, 14071372034879887
Offset: 2
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Table[QBinomial[n, 2, -3], {n, 2, 25}] (* G. C. Greubel, Jul 30 2016 *)
-
a(n)=([0,1,0; 0,0,1; -27,21,7]^(n-2)*[1;7;70])[1,1] \\ Charles R Greathouse IV, Jul 30 2016
-
[gaussian_binomial(n,2,-3) for n in range(2,18)] # Zerinvary Lajos, May 28 2009
A015585
a(n) = 9*a(n-1) + 10*a(n-2).
Original entry on oeis.org
0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (9,10).
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[Round(10^n/11): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
k=0;lst={k};Do[k=10^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
LinearRecurrence[{9,10},{0,1},30] (* Harvey P. Dale, Aug 08 2014 *)
-
a(n)=10^n\/11 \\ Charles R Greathouse IV, Jun 24 2011
-
[lucas_number1(n,9,-10) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
-
[abs(gaussian_binomial(n,1,-10)) for n in range(0,19)] # Zerinvary Lajos, May 28 2009
A081251
Numbers n such that A081249(m)/m^2 has a local maximum for m = n.
Original entry on oeis.org
2, 6, 20, 60, 182, 546, 1640, 4920, 14762, 44286, 132860, 398580, 1195742, 3587226, 10761680, 32285040, 96855122, 290565366, 871696100, 2615088300, 7845264902, 23535794706, 70607384120, 211822152360, 635466457082, 1906399371246
Offset: 1
6 is a term since A081249(5)/5^2 = 4/25 = 0.160, A081249(6)/6^2 = 7/36 = 0.194, A081249(7)/7^2 = 9/49 = 0.184.
-
List([1..30], n-> (9*3^(n-1) -(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
-
[Floor(3^(n+1)/4) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
seq(floor(3^(n+1)/4), n=1..30). # Mircea Merca, Dec 27 2010
-
a[n_]:= Floor[3^(n+1)/4]; Array[a, 30]
Table[(9*3^(n-1) -(-1)^n -2)/4, {n, 1, 30}] (* G. C. Greubel, Jul 14 2019 *)
-
vector(30, n, (9*3^(n-1) -(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
-
[(9*3^(n-1) -(-1)^n -2)/4 for n in (1..30)] # G. C. Greubel, Jul 14 2019
A109501
Number of closed walks of length n on the complete graph on 7 nodes from a given node.
Original entry on oeis.org
1, 0, 6, 30, 186, 1110, 6666, 39990, 239946, 1439670, 8638026, 51828150, 310968906, 1865813430, 11194880586, 67169283510, 403015701066, 2418094206390, 14508565238346, 87051391430070, 522308348580426, 3133850091482550, 18803100548895306, 112818603293371830
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Christopher R. Kitching, Henri Kauhanen, Jordan Abbott, Deepthi Gopal, Ricardo Bermúdez-Otero, and Tobias Galla, Estimating transmission noise on networks from stationary local order, arXiv:2405.12023 [cond-mat.stat-mech], 2024. See p. 48.
- Index entries for linear recurrences with constant coefficients, signature (5,6).
Cf. sequences with the same recurrence form:
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A015540. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(6^n + 6*(-1)^n)/7: n in [0..30]]; // G. C. Greubel, Dec 30 2017
-
k=0;lst={k};Do[k=6^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[(1 - 5*x)/(1 - 5*x - 6*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{5,6}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
for(n=0,30, print1((6^n + 6*(-1)^n)/7, ", ")) \\ G. C. Greubel, Dec 30 2017
Comments