cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A019798 Decimal expansion of sqrt(2*e).

Original entry on oeis.org

2, 3, 3, 1, 6, 4, 3, 9, 8, 1, 5, 9, 7, 1, 2, 4, 2, 0, 3, 3, 6, 3, 5, 3, 6, 0, 6, 2, 1, 6, 8, 4, 0, 0, 8, 7, 6, 3, 8, 0, 2, 3, 6, 2, 9, 9, 1, 8, 7, 5, 8, 8, 4, 2, 3, 0, 0, 8, 0, 9, 6, 4, 4, 7, 7, 7, 6, 0, 1, 0, 0, 4, 9, 4, 1, 2, 6, 5, 7, 3, 4, 9, 5, 0, 2, 6, 2, 9, 9, 9, 1, 7, 9, 5, 4, 7, 7, 7, 5
Offset: 1

Views

Author

Keywords

Comments

The coefficient a for which y=a*sqrt(x) kisses the exponential function y=exp(x). The kissing point is (0.5, sqrt(e)). For more details, see A257776. Also, inverse of this constant equals the maximum value of sqrt(x)*exp(-x) for positive x, attained at x=1/2. - Stanislav Sykora, Nov 04 2015

Examples

			2.3316439815971242033635360621684008763802362991875884230...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2*Exp(1)); // G. C. Greubel, Sep 08 2018
  • Mathematica
    RealDigits[Sqrt[2*E], 10, 100][[1]] (* G. C. Greubel, Sep 08 2018 *)
  • PARI
    sqrt(2*exp(1)) \\ Michel Marcus, Nov 05 2015
    

Formula

From Amiram Eldar, Jul 08 2023: (Start)
Equals Product_{n>=0} (e / (1 + 1/(n-1/2))^n).
Equals Product_{n>=0} (e * (1 - 1/(n+1/2))^n). (End)

A092042 Decimal expansion of e^(1/4).

Original entry on oeis.org

1, 2, 8, 4, 0, 2, 5, 4, 1, 6, 6, 8, 7, 7, 4, 1, 4, 8, 4, 0, 7, 3, 4, 2, 0, 5, 6, 8, 0, 6, 2, 4, 3, 6, 4, 5, 8, 3, 3, 6, 2, 8, 0, 8, 6, 5, 2, 8, 1, 4, 6, 3, 0, 8, 9, 2, 1, 7, 5, 0, 7, 2, 9, 6, 8, 7, 2, 2, 0, 7, 7, 6, 5, 8, 6, 7, 2, 3, 8, 0, 0, 2, 7, 5, 3, 3, 0, 6, 4, 1, 9, 4, 3, 9, 5, 5, 3, 5, 6, 8
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 27 2004

Keywords

Comments

e^(1/4) is also the integral from 0 to infinity of e^(-x) * I_0(sqrt(x)), where I_0(z) is a modified Bessel function. - Jean-François Alcover, Mar 10 2011
e^(1/4) maximizes the value of x^(c/(x^4)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.28402541668774148407342056806243645833....
		

Crossrefs

Programs

Formula

e^(1/4) = 1/2*( 1 +(5 +(9 +(13 +...)/12)/8)/4 ) = 1 +(1 +(1 +(1 +...)/12)/8)/4. - Rok Cestnik, Jan 19 2017
Equals lim_{n->oo} ((2*n-1)!!)^(1/(2*n))/A057863(n)^(1/n^2) (Bătinetu-Giurgiu, 2016). - Amiram Eldar, Apr 10 2022
Equals (Integral_{x=1..oo} 1/(x*log(x)^log(log(x))) dx)/sqrt(Pi). - Kritsada Moomuang, Jun 03 2025

A113011 Decimal expansion of 1/(sqrt(e) - 1).

Original entry on oeis.org

1, 5, 4, 1, 4, 9, 4, 0, 8, 2, 5, 3, 6, 7, 9, 8, 2, 8, 4, 1, 3, 1, 1, 0, 3, 4, 4, 4, 4, 7, 2, 5, 1, 4, 6, 3, 8, 3, 4, 0, 4, 5, 9, 2, 3, 6, 8, 4, 1, 8, 8, 2, 1, 0, 9, 4, 7, 4, 1, 3, 6, 9, 5, 6, 6, 3, 7, 5, 4, 2, 6, 3, 9, 1, 4, 3, 3, 1, 4, 8, 0, 7, 0, 7, 1, 8, 2, 5, 7, 2, 4, 0, 8, 5, 0, 0, 7, 7, 4, 2, 2, 4
Offset: 1

Views

Author

Eric W. Weisstein, following a suggestion of Grover W. Hughes, Oct 09 2005

Keywords

Comments

Has continued fraction 1+2/(3+4/(5+6/7+...)).
Simple continued fraction is 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, 1, 1, 17, 1, {1, 4k+1, 1}, ..., . - Robert G. Wilson v, Jul 01 2007

Examples

			1.54149408253679828413110344447251463834045923684188210947413695663...
		

Crossrefs

Programs

  • Magma
    1/(Sqrt(Exp(1)) - 1); // G. C. Greubel, Apr 09 2018
  • Mathematica
    First@ RealDigits[ 1 / (Exp[1/2] - 1), 10, 111] (* Robert G. Wilson v, Jul 01 2007 *)
    f[n_] := Fold[ Last@ #2 + First@ #2/#1 &, 2n - 1, Partition[ Reverse@ Range[ 2n - 2], 2]]; RealDigits[ f[61], 10, 105][[1]] (* Robert G. Wilson v, Jul 07 2012 *)
    Rest[realDigitsRecip[Sqrt[E]-1]] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    1/(sqrt(exp(1)) - 1) \\ G. C. Greubel, Apr 09 2018
    

Formula

Equals Integral_{x = 0..oo} floor(2*x)*exp(-x) dx. - Peter Bala, Oct 09 2013
Equals 3/2 + Sum_{k>=0} tanh(1/2^(k+3))/2^(k+2). - Antonio Graciá Llorente, Jan 21 2024
Conjecture: 1/(sqrt(e) - 1) = 1 + K_{n>=1} 2*n/(4*n^2-1)/1, where K is the Gauss notation for an infinite continued fraction. In the expanded form, 1/(sqrt(e) - 1) = 1 + 2/3/(1 + 4/15/(1 + 6/35/(1 + ...))) (see Beit-Halachmi and Kaminer). - Stefano Spezia, Dec 27 2024
Equals 1/(A019774 - 1). - Hugo Pfoertner, Dec 27 2024

Extensions

Simpler definition from T. D. Noe, Oct 09 2005
Euler reference from David L. Harden, Oct 09 2005

A334381 Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).

Original entry on oeis.org

1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021

A005181 a(n) = ceiling(exp((n-1)/2)).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 91, 149, 245, 404, 666, 1097, 1809, 2981, 4915, 8104, 13360, 22027, 36316, 59875, 98716, 162755, 268338, 442414, 729417, 1202605, 1982760, 3269018, 5389699, 8886111, 14650720, 24154953, 39824785, 65659970, 108254988, 178482301
Offset: 0

Views

Author

Keywords

Comments

This sequence illustrates the second law of small numbers because it is a coincidence that its first ten terms are the same as the first ten Fibonacci numbers (A000045). - Alonso del Arte, Mar 18 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, pp. 27 Belin-Pour La Science, Paris 2000.

Crossrefs

Programs

  • Maple
    seq(round(ceil(exp((n-1)/2))), n=0..50); # Vladimir Pletser, Sep 15 2013
  • Mathematica
    Table[Ceiling[E^((n - 1)/2)], {n, 0, 39}] (* Alonso del Arte, Mar 18 2013 *)
  • Python
    import math
    for n in range(99):
        print(str(int(math.ceil(math.e**((n-1)*0.5)))), end=', ')
    # Alex Ratushnyak, Mar 18 2013

Formula

Limit_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774. - Alois P. Heinz, Feb 19 2019

Extensions

A few more terms from Alonso del Arte, Mar 18 2013

A249455 Decimal expansion of 2/sqrt(e), a constant appearing in the expression of the asymptotic expected volume V(d) of the convex hull of randomly selected n(d) vertices (with replacement) of a d-dimensional unit cube.

Original entry on oeis.org

1, 2, 1, 3, 0, 6, 1, 3, 1, 9, 4, 2, 5, 2, 6, 6, 8, 4, 7, 2, 0, 7, 5, 9, 9, 0, 6, 9, 9, 8, 2, 3, 6, 0, 9, 0, 6, 8, 8, 3, 8, 3, 6, 2, 7, 0, 9, 7, 4, 3, 7, 3, 9, 1, 1, 3, 6, 5, 7, 8, 4, 3, 1, 7, 4, 7, 0, 1, 1, 3, 0, 3, 8, 8, 2, 7, 4, 9, 6, 8, 4, 7, 9, 9, 7, 2, 9, 5, 2, 2, 3, 0, 1, 5, 9, 7, 8, 9, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 29 2014

Keywords

Examples

			1.21306131942526684720759906998236090688383627...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 634.

Crossrefs

Programs

Formula

Lim_{d -> infinity} V(d) =
0 if n(d) <= (2/sqrt(e) - epsilon)^d
1 if n(d) >= (2/sqrt(e) + epsilon)^d.
Equals Product_{m>=1} A(2*m)^((-1)^(m+1)*Pi^(2*m)/(2*m)!), where A(k) is the k-th generalized Glaisher-Kinkelin (or Bendersky-Adamchik) constant (A074962, A243262, A243263, ...) (Perkins and Van Gorder, 2019). - Amiram Eldar, Feb 08 2024

A019775 Decimal expansion of sqrt(e)/2.

Original entry on oeis.org

8, 2, 4, 3, 6, 0, 6, 3, 5, 3, 5, 0, 0, 6, 4, 0, 7, 3, 4, 2, 4, 3, 2, 5, 3, 9, 3, 9, 0, 7, 0, 8, 1, 7, 8, 5, 8, 2, 6, 8, 8, 8, 0, 5, 0, 3, 5, 5, 0, 7, 4, 0, 0, 5, 7, 8, 7, 5, 3, 9, 6, 5, 5, 8, 2, 0, 3, 3, 0, 5, 1, 0, 5, 9, 7, 1, 0, 7, 8, 0, 4, 3, 1, 6, 3, 8, 8, 2, 6, 0, 0, 2, 8, 1, 8, 3, 3, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			0.82436063535006407342432539390708178582688805035507...
		

Crossrefs

Cf. A019774.

Programs

  • Mathematica
    RealDigits[Sqrt[E]/2,10,120][[1]] (* Harvey P. Dale, Jun 18 2014 *)

Formula

From Amiram Eldar, Jul 21 2020: (Start)
Equals Sum_{k>=0} 1/(2^(k+1)*k!).
Equals Sum_{k>=0} 1/(2^k*(k-1)!).
Equals Sum_{k>=0} k/(2*k)!!.
Equals A019774/2. (End)
From Peter Bala, Jun 29 2024: (Start)
Equals Sum_{n >= 0} 1/((1 - 4*n^2)*(2^n)*n!).
Continued fraction expansion [0; 1, 4, 1, 2, 3, 1, 4, 3, 1, ..., 2*n, 3, 1, ...]. (End)

A092514 Decimal expansion of e^(1/5).

Original entry on oeis.org

1, 2, 2, 1, 4, 0, 2, 7, 5, 8, 1, 6, 0, 1, 6, 9, 8, 3, 3, 9, 2, 1, 0, 7, 1, 9, 9, 4, 6, 3, 9, 6, 7, 4, 1, 7, 0, 3, 0, 7, 5, 8, 0, 9, 4, 1, 5, 2, 0, 5, 0, 3, 6, 4, 1, 2, 7, 3, 4, 2, 5, 0, 9, 8, 5, 9, 9, 2, 0, 6, 2, 3, 3, 0, 8, 3, 6, 3, 7, 8, 1, 6, 2, 4, 2, 2, 8, 8, 7, 4, 4, 0, 1, 3, 3, 7, 2, 4, 7, 3, 9, 6, 9, 0, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Comments

e^(1/5) maximizes the value of x^(c/(x^5)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.22140275816...
		

Crossrefs

Programs

Formula

e^(1/5) = 5^(2*5)/21355775*(1 + Sum_{n>=1} (1 + n^7/5 + n/5)/(5^n*n!)). - Alexander R. Povolotsky, Sep 13 2011
e^(1/5) = (1/2)*lim_{n -> oo} 1 + (6 + (11 + (16 + ... + ((5*n+1)/ (5*n))/...)/15)/10)/5 = lim_{n -> oo} 1 + (1 + (1 + (1 + ... + (1 + 1/(5*n+5))/(5*n)/...)/15)/10)/5. - Rok Cestnik, Jan 19 2017

A092516 Decimal expansion of e^(1/7).

Original entry on oeis.org

1, 1, 5, 3, 5, 6, 4, 9, 9, 4, 8, 9, 5, 1, 0, 7, 7, 5, 3, 4, 6, 1, 3, 3, 9, 6, 2, 4, 4, 7, 1, 8, 6, 2, 4, 4, 1, 9, 9, 5, 6, 8, 7, 7, 3, 2, 7, 3, 9, 6, 6, 0, 9, 5, 1, 5, 3, 8, 8, 0, 1, 0, 8, 2, 4, 7, 6, 8, 4, 0, 3, 7, 0, 2, 7, 2, 1, 0, 6, 8, 4, 3, 0, 3, 5, 9, 9, 1, 3, 6, 2, 1, 8, 2, 3, 5, 8, 6, 0, 8, 6, 7, 4, 1, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Examples

			1.1535649948951077
		

Crossrefs

Programs

Formula

e^(1/7) = (282475249/1008106751) * (1+ Sum_{n>=1} ((1+n^9/7+n/7)/(7^n*n!))). - Alexander R. Povolotsky, Sep 13 2011

A092615 Decimal expansion of e^(-1/3).

Original entry on oeis.org

7, 1, 6, 5, 3, 1, 3, 1, 0, 5, 7, 3, 7, 8, 9, 2, 5, 0, 4, 2, 5, 6, 0, 4, 0, 9, 6, 9, 2, 5, 3, 7, 9, 6, 6, 7, 4, 5, 3, 1, 1, 2, 0, 5, 9, 8, 2, 1, 4, 7, 9, 1, 5, 7, 1, 4, 0, 8, 7, 0, 2, 0, 7, 1, 2, 7, 3, 0, 4, 0, 7, 7, 2, 3, 4, 9, 0, 2, 3, 7, 9, 1, 0, 8, 7, 9, 1, 0, 8, 8, 9, 1, 5, 1, 7, 4, 9, 4, 6, 1, 5, 9, 0, 7, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.71653131057378925042560409692537966745311205982147...
		

Crossrefs

Cf. A001113, A019774, A068985, A092041 (reciprocal).

Programs

  • Mathematica
    RealDigits[E^(-1/3),10,120][[1]] (* Harvey P. Dale, Feb 13 2012 *)

Formula

Equals lim_{x->0} (tanh(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022
Previous Showing 11-20 of 63 results. Next