A228910
a(n) = 8^n - 7*7^n + 21*6^n - 35*5^n + 35*4^n - 21*3^n + 7*2^n - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 181440, 3780000, 59875200, 801496080, 9574044480, 105398092800, 1091804313600, 10794490827120, 102896614941120, 952741767650400, 8617145057539200, 76461500619902160, 667855517349303360, 5757691363157764800, 49099453300298016000, 414884142077935345200
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1107
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
The eighth column of results of
A163626.
-
[8^(n)-7*7^(n)+21*6^(n)-35*5^(n)+35*4^(n)-21*3^(n)+7*2^(n)-1: n in [0..30]]; // G. C. Greubel, Nov 19 2017
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[ Derivative[n][y][x], y[x]] // Rest; Join[{0, 0, 0, 0, 0, 0, 0}, Table[ -row[n], {n, 7, 23}] [[All, 8]]] (* Jean-François Alcover, Dec 16 2014 *)
Table[7!*StirlingS2[n + 1, 8], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[8^n - 7*7^n + 21*6^n - 35*5^n + 35*4^n - 21*3^n + 7*2^n - 1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[5040*x^7 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
-
a(n)=8^(n)-7*7^(n)+21*6^(n)-35*5^(n)+35*4^(n)-21*3^(n)+7*2^(n)-1.
-
for(n=0,30, print1(5040*stirling(n+1,8,2), ", ")) \\ G. C. Greubel, Nov 19 2017
A028245
a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind).
Original entry on oeis.org
0, 0, 0, 0, 24, 360, 3360, 25200, 166824, 1020600, 5921520, 33105600, 180204024, 961800840, 5058406080, 26308573200, 135666039624, 694994293080, 3542142833040, 17980946172000, 90990301641624
Offset: 1
-
[5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
-
24StirlingS2[Range[30],5] (* Harvey P. Dale, Jun 18 2013 *)
Table[5^(n - 1) - 4*4^(n - 1) + 6*3^(n - 1) - 4*2^(n - 1) + 1, {n, 21}] (* or *)
Rest@ CoefficientList[Series[-24 x^5/((x - 1) (4 x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 21}], x] (* Michael De Vlieger, Sep 24 2016 *)
-
for(n=1,30, print1(24*stirling(n,5,2), ", ")) \\ G. C. Greubel, Nov 19 2017
A032180
Number of ways to partition n labeled elements into 6 pie slices.
Original entry on oeis.org
120, 2520, 31920, 317520, 2739240, 21538440, 158838240, 1118557440, 7612364760, 50483192760, 328191186960, 2100689987760, 13282470124680, 83169792213480, 516729467446080, 3190281535536480, 19596640721427000, 119876382958008600
Offset: 6
- Vincenzo Librandi, Table of n, a(n) for n = 6..1000
- C. G. Bower, Transforms (2)
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
-
[5*2^(n-1)-10*3^(n-1)+10*4^(n-1)-5^n+6^(n-1)-1: n in [6..30]]; // Vincenzo Librandi, Oct 19 2013
-
with (combstruct):ZL:=[S, {S=Sequence(U, card=r), U=Set(Z, card>=1)}, labeled]: seq(count(subs(r=6, ZL), size=m)/6, m=6..21); # Zerinvary Lajos, Mar 08 2008
-
CoefficientList[Series[120/((x - 1) (2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 19 2013 *)
Table[120*StirlingS2[n,6], {n,6,30}] (* G. C. Greubel, Nov 19 2017 *)
-
for(n=6,30, print1(120*stirling(n,6,2), ", ")) \\ G. C. Greubel, Nov 19 2017
A053154
Number of 2-element intersecting families (with not necessarily distinct sets) of an n-element set.
Original entry on oeis.org
0, 1, 5, 22, 95, 406, 1715, 7162, 29615, 121486, 495275, 2009602, 8124935, 32761366, 131834435, 529712842, 2125993055, 8525430046, 34166159195, 136858084882, 548012945975, 2193794127526, 8780404589555, 35137304693722
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(4^n-3^n+2^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Oct 06 2017
-
Table[(4^n-3^n+2^n-1)/2, {n,1,30}] (* Clark Kimberling, Mar 12 2012 *)
CoefficientList[Series[x (1 - 5 x + 7 x^2) / ((1 - x) (1 - 4 x) (1 - 3 x) (1 - 2 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n) = (4^n-3^n+2^n-1)/2; \\ Michel Marcus, Nov 30 2015
A134169
a(n) = 2^(n-1)*(2^n - 1) + 1.
Original entry on oeis.org
1, 2, 7, 29, 121, 497, 2017, 8129, 32641, 130817, 523777, 2096129, 8386561, 33550337, 134209537, 536854529, 2147450881, 8589869057, 34359607297, 137438691329, 549755289601, 2199022206977, 8796090925057, 35184367894529
Offset: 0
a(2) = 7 because for P(A) = {{},{1},{2},{1,2}} we have for Case 0 {{1},{2}}; we have for Case 2 {{1},{1,2}}, {{2},{1,2}}; and we have for Case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under Case 1.
-
Table[EulerE[2,2^n],{n,0,60}]/2+1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{7,-14,8},{1,2,7},30] (* Harvey P. Dale, Mar 12 2013 *)
A053156
Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.
Original entry on oeis.org
1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
-
A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
-
LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
-
a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
A053440
Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.
Original entry on oeis.org
1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31, 180, 390, 360, 120, 63, 602, 2100, 3360, 2520, 720, 127, 1932, 10206, 25200, 31920, 20160, 5040, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 0
T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - _Geoffrey Critzer_, Dec 20 2011
Triangle begins:
1
3 2
7 12 6
15 50 60 24
31 180 390 360 120
-
a := (n, k) -> (k+1)!*Stirling2(n+2, k+2):
seq(print(seq(a(n, k), k = 0..n)), n = 0..10);
-
nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &];Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k Exp[x], {x, 0, nn}],x], 1], {k, 1, 5}]]] // Grid (* Geoffrey Critzer, Dec 20 2011 *)
Table[(k+1)!*StirlingS2[n+2,k+2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2017 *)
-
for(n=0,10, for(k=0,n, print1((k+1)!*stirling(n+2,k+2,2), ", "))) \\ G. C. Greubel, Nov 19 2017
A245019
Number of ordered n-tuples of positive integers, whose minimum is 0 and maximum is 4.
Original entry on oeis.org
0, 2, 24, 194, 1320, 8162, 47544, 266114, 1448520, 7727522, 40616664, 211117634, 1088079720, 5571427682, 28384443384, 144041002754, 728708854920, 3677645732642, 18524892775704, 93171895169474, 468051525534120, 2349032799986402
Offset: 1
For n=2 the a(2)=2 solutions are (0,4) and (4,0).
A249163
Triangle read by rows: the positive terms of A163626.
Original entry on oeis.org
1, 1, 1, 2, 1, 12, 1, 50, 24, 1, 180, 360, 1, 602, 3360, 720, 1, 1932, 25200, 20160, 1, 6050, 166824, 332640, 40320, 1, 18660, 1020600, 4233600, 1814400, 1, 57002, 5921520, 46070640, 46569600, 3628800, 1, 173052, 33105600, 451725120, 898128000, 239500800
Offset: 0
Cf.
A163626,
A000670,
A211374; also
A000012,
A000392,
A000481,
A000771,
A049447,
A028243,
A028246,
A091137,
A228909,
A163626,
A228911,
A228913 and Worpitzky numbers for the second Bernoulli numbers
A164555(n)/
A027642(n).
-
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[Derivative[n][y][x], y[x]] // Rest; Table[ Select[row[n], Positive] , {n, 0, 12}] // Flatten
(* or, simply: *) Table[(-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten // Select[#, Positive]& (* Jean-François Alcover, Dec 16 2014 *)
A260217
Number of base-3 n-digit pandigital numbers.
Original entry on oeis.org
0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
Offset: 1
a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3).
a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
- Svenja Huntemann, Values, Temperatures, and Enumeration of Placement Games, Slides, Alberta-Montana Combinatorics and Algorithms Day, Banff, Canada, 23-25 June 2023. See p. 105/109.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Comments