cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 110 results. Next

A094958 Numbers of the form 2^k or 5*2^k.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152
Offset: 1

Views

Author

Ralf Stephan, Jun 01 2004

Keywords

Comments

The subset {a(1),...,a(2k)} together with a(2k+2) is the set of proper divisors of 5*2^k.
For a(n)>4: number of vertices of complete graphs that can be properly edge-colored in such a way that the edges can be partitioned into edge disjoint multicolored isomorphic spanning trees.
(Editor's note: The following 3 comments are equivalent.)
From Wouter Meeussen, Apr 10 2005: This appears to be the same sequence as "Numbers n such that n^2 is not the sum of three nonzero squares". Don Reble and Paul Pollack respond: Yes, that is correct.
Also numbers k such that k^2=a^2+b^2+c^2 has no solutions in the positive integers a, b and c. - Wouter Meeussen, Apr 20 2005
The only natural numbers which cannot be the lengths of an interior diagonal of a cuboid with natural edges. - Michael Somos, Mar 02 2004

References

  • Wacław Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 101, MR2002669.

Crossrefs

Union of A000079 and A020714.
Complement of A005767.

Programs

  • Mathematica
    With[{c=2^Range[0,30]},Union[Join[c,5c]]] (* Harvey P. Dale, Jul 15 2012 *)
  • Python
    def A094958(n): return 1<>1)+1 if n&1 else 5<<((n>>1)-2) # Chai Wah Wu, Feb 14 2025

Formula

a(1)=1, a(2)=2, a(3)=4, for n>=0, a(2n+3) = 4*2^n, a(2n+4) = 5*2^n.
Recurrence: for n>4, a(n) = 2a(n-2).
G.f.: x*(1+x)*(1+x+x^2)/(1-2x^2).
Sum_{n>=1} 1/a(n) = 12/5. - Amiram Eldar, Jan 21 2022

Extensions

Edited by T. D. Noe and M. F. Hasler, Nov 12 2010

A093873 Numerators in Kepler's tree of harmonic fractions.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, 1, 4, 3, 4, 2, 5, 3, 5, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 6, 5, 6, 4, 9, 5, 9, 3, 10, 7, 10, 4, 11, 7, 11, 2, 9, 7, 9, 5, 12, 7, 12, 3, 11, 8, 11, 5, 13, 8, 13, 1, 6
Offset: 1

Views

Author

Keywords

Comments

Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).

Examples

			The first few fractions are:
1 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 5 3 5 1 4 3 4 2 5 3 5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
1 2 2 3 3 3 3 4 4 5 5 4 4 5 5 5 5 7 7 7 7 8 8 5 5 7 7 7 7 8 8
		

Crossrefs

The denominators are in A093875. Usually one only considers the left-hand half of the tree, which gives the fractions A020651/A086592. See A086592 for more information, references to Kepler, etc.
See A294442 for another version of Kepler's tree of fractions.

Programs

  • Haskell
    {-# LANGUAGE ViewPatterns #-}
    import Data.Ratio((%), numerator, denominator)
    rat :: Rational -> (Integer,Integer)
    rat r = (numerator r, denominator r)
    data Harmony = Harmony Harmony Rational Harmony
    rows :: Harmony -> [[Rational]]
    rows (Harmony hL r hR) = [r] : zipWith (++) (rows hL) (rows hR)
    kepler :: Rational -> Harmony
    kepler r = Harmony (kepler (i%(i+j))) r (kepler (j%(i+j)))
               where (rat -> (i,j)) = r
    -- Full tree of Kepler's harmonic fractions:
    k = rows $ kepler 1 :: [[Rational]] -- as list of lists
    h = concat k :: [Rational] -- flattened
    a093873 n = numerator $ h !! (n - 1)
    a093875 n = denominator $ h !! (n - 1)
    a011782 n = numerator $ (map sum k) !! n -- denominator == 1
    -- length (k !! n) == 2^n
    -- numerator $ (map last k) !! n == fibonacci (n + 1)
    -- denominator $ (map last k) !! n == fibonacci (n + 2)
    -- numerator $ (map maximum k) !! n == n
    -- denominator $ (map maximum k) !! n == n + 1
    -- eop.
    -- Reinhard Zumkeller, Oct 17 2010
  • Maple
    M:= 8: # to get a(1) .. a(2^M-1)
    gen[1]:= [1];
    for n from 2 to M do
      gen[n]:= map(t -> (numer(t)/(numer(t)+denom(t)),
          denom(t)/(numer(t)+denom(t))), gen[n-1]);
    od:
    seq(op(map(numer,gen[i])),i=1..M): # Robert Israel, Jan 11 2016
  • Mathematica
    num[1] = num[2] = 1; den[1] = 1; den[2] = 2; num[n_?EvenQ] := num[n] = num[n/2]; den[n_?EvenQ] := den[n] = num[n/2] + den[n/2]; num[n_?OddQ] := num[n] = den[(n-1)/2]; den[n_?OddQ] := den[n] = num[(n-1)/2] + den[(n-1)/2]; A093873 = Table[num[n], {n, 1, 97}] (* Jean-François Alcover, Dec 16 2011 *)

Formula

a(n) = a([n/2])*(1 - n mod 2) + A093875([n/2])*(n mod 2).
a(A029744(n-1)) = 1; a(A070875(n-1)) = 2; a(A123760(n-1)) = 3. - Reinhard Zumkeller, Oct 13 2006
A011782(k) = SUM(a(n)/A093875(n): 2^k<=n<2^(k+1)), k>=0. [Reinhard Zumkeller, Oct 17 2010]
a(1) = 1. For all n>0 a(2n) = a(n), a(2n+1) = A093875(n). - Yosu Yurramendi, Jan 09 2016
a(4n+3) = a(4n+1), a(4n+2) = a(4n+1) - a(4n), a(4n+1) = A071585(n). - Yosu Yurramendi, Jan 11 2016
G.f. G(x) satisfies G(x) = x + (1+x) G(x^2) + Sum_{k>=2} x (1+x^(2^(k-1))) G(x^(2^k)). - Robert Israel, Jan 11 2016
a(2^(m+1)+k) = a(2^(m+1)+2^m+k) = A020651(2^m+k), m>=0, 0<=k<2^m. - Yosu Yurramendi, May 18 2016
a(k) = A020651(2^(m+1)+k) - A020651(2^m+k), m>0, 0Yosu Yurramendi, Jun 01 2016
a(2^(m+1)+k) - a(2^m+k) = a(k) , m >=0, 0 <= k < 2^m. For k=0 a(0)=0 is needed. - Yosu Yurramendi, Jul 22 2016
a(2^(m+2)-1-k) = a(2^(m+1)-1-k) + a(2^m-1-k), m >= 1, 0 <= k < 2^m. - Yosu Yurramendi, Jul 22 2016
a(2^m-1-(2^r -1)) = A000045(m-r), m >= 1, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
a(2^m+2^r) = m-r, , m >= 1, 0 <= r <= m-1 ; a(2^m+2^r+2^(r-1)) = m-(r-1), m >= 2, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
A093875(2n) - a(2n) = A093875(n), n > 0; A093875(2n+1) - a(2n+1) = a(n), n > 0. - Yosu Yurramendi, Jul 23 2016

A090989 Number of meaningful differential operations of the n-th order on the space R^4.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    (2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
    

Formula

a(k+2) = 2*a(k).
a(n) = b(n+3) where b(n) = gcdConv(c(n)) = Sum_{k=0..n} gcd(c(k),c(n-k)) and c(k)=A000079(k) for k>0 and c(0)=1. - Tilman Neumann, Jan 11 2009 [Updated by Sean A. Irvine, Jan 15 2025]
G.f.: 2*x*(2+3*x)/(1-2*x^2). - Colin Barker, May 03 2012
a(n) = 2*A164090(n). - R. J. Mathar, Jan 25 2023
a(n) = (sqrt(2))^n*(3/2 + sqrt(2) + (-1)^n*(3/2 - sqrt(2))). - Taras Goy, Jan 04 2025

Extensions

More terms from Tilman Neumann, Feb 06 2009

A220062 Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Dec 03 2012

Keywords

Comments

Equivalently, the number of walks of length n-1 on the path graph P_k. - Andrew Howroyd, Apr 17 2017

Examples

			A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
  1,  1,  1,  1,  1,   1,   1,   1, ...
  0,  1,  2,  3,  4,   5,   6,   7, ...
  0,  0,  2,  4,  6,   8,  10,  12, ...
  0,  0,  2,  6, 10,  14,  18,  22, ...
  0,  0,  2,  8, 16,  24,  32,  40, ...
  0,  0,  2, 12, 26,  42,  58,  74, ...
  0,  0,  2, 16, 42,  72, 104, 136, ...
  0,  0,  2, 24, 68, 126, 188, 252, ...
		

Crossrefs

Columns k=0, 2-10 give: A000007, A040000, A029744(n+2) for n>0, A006355(n+3) for n>0, A090993(n+1) for n>0, A090995(n-1) for n>2, A129639, A153340, A153362, A153360.
Rows 0-6 give: A000012, A001477, A005843(k-1) for k>0, A016825(k-2) for k>1, A008590(k-2) for k>2, A113770(k-2) for k>3, A063164(k-2) for k>4.
Main diagonal gives: A102699.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-1, j, k), j=1..k),
          `if`(i>1, b(n-1, i-1, k), 0)+
          `if`(i b(n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
  • PARI
    TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
    ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
    a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
    for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
    \\ Andrew Howroyd, Apr 17 2017

A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3.

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Interleaving of A000079 without initial 1 and A007283.
Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978.
Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035.
Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - Robert A. Russell, Sep 22 2018

Crossrefs

Programs

  • Magma
    [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
    
  • Mathematica
    a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
    RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017

Formula

a(n) = A029744(n+1).
a(n) = A052955(n-1) + 1.
a(n) = A027383(n-2) + 2 for n > 1.
a(n) = A060482(n-1) + 3 for n > 3.
a(n) = A070875(n) - A070875(n-1).
a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4.
G.f.: x*(2+3*x)/(1-2*x^2).
a(n) = A063759(n-1), n>1. - R. J. Mathar, Aug 17 2009
Sum_{n>=1} 1/a(n) = 5/3. - Amiram Eldar, Mar 28 2022

A228405 Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0

Views

Author

Richard R. Forberg, Aug 21 2013

Keywords

Comments

The left column, A(n,0), is A000129(n), Pell Numbers.
The top row, A(0,k), is A077957(k) plus an initial 0, which is the inverse binomial transform of A000129.
These may be considered initializing values, or results, depending the perspective taken, since there are several ways to generate the array. See Formula section for details.
The columns of the array hold all values, in sequential order, of numbers m such that 2m^2 + 2^k or 2m^2 - 2^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for k+1.
For example A(n,0) are numbers such that 2m^2 +- 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 2m^2 +- 2 are squares, with those square roots in A(n,2), etc.
A(n, k)/A(n,k-2) = 2; A(n,k)/A(n,k-1) converges to sqrt(2) for large n.
A(n,k)/A(n-1,k) converges to 1 + sqrt(2) for large n.
The other columns of this array hold current OEIS sequences as follows:
A(n,1) = A001333(n); A(n,2) = A163271(n); A(n,3) = A002203(n);
Bisections of these column-oriented sequences also appear in the OEIS, corresponding to the even and odd rows of the array, which in turn correspond to the two different recursive square root equations in the formula section below.
Farey fraction denominators interleave columns 0 and 1, and the corresponding numerators interleave columns 1 and 2, for approximating sqrt(2). See A002965 and A119016, respectively.
The other rows of this array hold current OEIS sequences as follows:
A(1,k) = A016116(k); A(2,k) = A029744(k) less the initial 1;
A(3,k) = A070875(k); A(4,k) = A091523(k) less the initial 8.
The Pell Numbers (A000219) are the only initializing set of numbers where the two recursive square root equations (see below) produce exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.
The numbers in this array, especially the first three columns, are also integer square roots of these expressions: floor(m^2/2), floor(m^2/2 + 1), floor (m^2/2 - 1). See A227972 for specific arrangements and relationships. Also: ceiling(m^2/2), ceiling(m^2/2 + 1), ceiling (m^2/2 -1), m^2+1, m^2-1, m^2*(m^2-1)/2, m^2*(m^2-1)/2, in various different arrangements. Many of these involve: A000129(2n)/2 = A001109(n).
A001109 also appears when multiplying adjacent columns: A(n,k) * A(n,k+1) = (k+1) * A001109(n), for all k.

Examples

			With row # as n. and column # as k, and n, k =>0, the array begins:
0,     1,     0,     2,     0,     4,     0,     8, ...
1,     1,     2,     2,     4,     4,     8,     8, ...
2,     3,     4,     6,     8,    12,    16,    24, ...
5,     7,    10,    14,    20,    28,    40,    56, ...
12,   17,    24,    34,    48,    68,    96,   136, ...
29,   41,    58,    82,   116,   164,   232,   328, ...
70,   99,   140,   198,   280,   396,   560,   792, ...
169,  239,  338,   478,   676,   956,  1352,  1912, ...
408,  577,  816,  1154,  1632,  2308,  3264,  4616, ...
		

Crossrefs

Formula

If using the left column and top row to initialize: A(n,k) = A(n,k-1) + A(n-1,k-1).
If using only the top row to initialize, then each column for k = i is the binomial transform of A(0,k) restricted to k=> i as input to the transform with an appropriate down shift of index. The inverse binomial transform with a similar condition can produce each row from A000129.
If using only the first two rows to initialize then the Pell equation produces each column, as: A(n,k) = 2*A(n-1, k) + A(n-2, k).
If using only the left column (A000219(n) = Pell Numbers) to initialize then the following two equations will produce each row:
A(n,k) = sqrt(2*A(n,k-1) + (-2)^(k-1)) for even rows
A(n,k) = sqrt(2*A(n,k-1) - (-2)^(k-1)) for odd rows.
Interestingly, any portion of the array can also be filled "backwards" given the top row and any column k, using only: A(n,k-1) = A(n-1,k-1) + A(n-1, k), or if given any column and its column number by rearranging the sqrt recursions above.

A246079 Paradigm shift sequence for (-1,5) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 66, 72, 78, 84, 90, 99, 108, 117, 126, 135, 144, 156, 168, 180, 198, 216, 234, 252, 270, 297, 324, 351, 378, 405, 432, 468, 504, 540, 594, 648, 702, 756, 810, 891, 972, 1053, 1134, 1215, 1296, 1404
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-1 steps), or implement the current bundled action (which requires q=5 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 3.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=5: A103969, A246074, A246075, A246076, A246079, A246083, A246087, A246091, A246095, A246099, A246103.
Paradigm shift sequences with p<0: A103969, A246074, A246075, A246076, A246079, A029750, A246078, A029747, A246077, A029744, A029747, A131577.

Programs

  • Mathematica
    Join[Range[18], LinearRecurrence[PadLeft[{3}, 14], {20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 52, 56}, 55]] (* Jean-François Alcover, Sep 25 2017 *)
  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +12*x^14 +10*x^15 +8*x^16 +6*x^17 +5*x^18 +4*x^19 +3*x^20 +2*x^21 +x^22 +x^30 +2*x^31) / (1 -3*x^14) + O(x^100)) \\ Colin Barker, Nov 18 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 3*a(n-14) for all n >= 33.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +12*x^14 +10*x^15 +8*x^16 +6*x^17 +5*x^18 +4*x^19 +3*x^20 +2*x^21 +x^22 +x^30 +2*x^31) / (1 -3*x^14). - Colin Barker, Nov 18 2016

A056487 a(n) = 5^(n/2) for n even, a(n) = 3*5^((n-1)/2) for n odd.

Original entry on oeis.org

1, 3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875, 30517578125, 91552734375
Offset: 0

Views

Author

Keywords

Comments

Apparently identical to A111386! Is this a theorem? - Klaus Brockhaus, Jul 21 2009
For n > 1, number of necklaces with n-1 beads and 5 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

Formula

a(n+2) = 5*a(n), a(0)=1, a(2)=3.
Binomial transform of A087205. Binomial transform is A087206. - Paul Barry, Aug 25 2003
G.f.: (1+3*x)/(1-5*x^2); a(n) = 5^(n/2)(1/2 + 3*sqrt(5)/10 + (1/2 - 3*sqrt(5)/10)(-1)^n). - Paul Barry, Mar 19 2004
2nd inverse binomial transform of Fibonacci(3n+2). - Paul Barry, Apr 16 2004
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 3^((1 - (-1)^n)/2) * 5^((2*n + (-1)^n-1)/4). - Bruno Berselli, Mar 24 2011
a(n+1) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 2, where k=5 is the number of possible colors. - Robert A. Russell, Sep 22 2018
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 06 2023

Extensions

Changed one 'even' to 'odd' in the definition. - R. J. Mathar, Oct 06 2010

A059076 Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
Offset: 0

Views

Author

Henry Bottomley, Dec 22 2000

Keywords

Comments

Number of chiral bracelets with n beads and two colors.

Examples

			For n=6, the only chiral pair is AABABB-AABBAB.  For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Column 2 of A293496.
Cf. A059053.
Column 2 of A305541.
Equals (A000031 - A164090) / 2.
a(n) = (A052823(n) - A027383(n-2)) / 2.

Programs

  • Mathematica
    nn=35;Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]-CycleIndex[DihedralGroup[n],s]/.Table[s[i]->2,{i,1,n}],{x,0,nn}],x],{n,1,nn}]//Flatten  (* Geoffrey Critzer, Mar 26 2013 *)
    mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
    k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = A000031(n) - A000029(n) = A000029(n) - A029744(n) = (A000031(n) - A029744(n))/2 = A008965(n) - A091696(n)
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n - (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = -(k^floor((n + 1)/2) + k^ceiling((n + 1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k = 2 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A246075 Paradigm shift sequence for a (-3,5) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 96, 104, 112, 128, 144, 160, 176, 192, 208, 224, 256, 288, 320, 352, 384, 416, 448, 512, 576, 640, 704, 768, 832, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 4096
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-3 steps), or implement the current bundled action (which requires q=5 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output followinging a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 2.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.
5. For large n, the sequence is recursively defined.

Crossrefs

Paradigm shift sequences for implementation size p=5: A103969, A246074, A246075, A246076, A246079, A246083, A246087, A246091, A246095, A246099, A246103.
Paradigm shift sequences for p<0: A103969, A246074, A246075, A246076, A246079, A029750, A246078, A029747, A246077, A029744, A029747, A131577.

Programs

  • Mathematica
    Join[Range[6], LinearRecurrence[PadLeft[{2}, 7], Range[7, 13], 65]] (* Jean-François Alcover, Sep 25 2017 *)
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2 / (1 -2*x^7) + O(x^100)) \\ Colin Barker, Nov 18 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 2*a(n-7) for all n >= 14.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2 / (1 -2*x^7). - Colin Barker, Nov 18 2016
Previous Showing 31-40 of 110 results. Next