cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 191 results. Next

A133525 Sum of third powers of four consecutive primes.

Original entry on oeis.org

503, 1826, 3996, 8784, 15300, 26136, 48328, 73206, 117000, 173754, 228872, 302904, 401128, 537586, 685060, 882000, 1091034, 1274672, 1540730, 1811754, 2158812, 2682468, 3219730, 3740670, 4260744, 4643100, 5055696, 6011352, 7034400
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=503 because 2^3+3^3+5^3+7^3=503.
		

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1)..a(N)
    P3:= [0,seq(ithprime(i)^3,i=1..N+3)]:
    S:= ListTools:-PartialSums(P3):
    seq(S[i+4]-S[i],i=1..N); # Robert Israel, Jan 01 2024
  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[40]]^3,4,1] (* Harvey P. Dale, Jan 06 2019 *)

Formula

a(n) = A133530(n) + A030078(n+3). - Michel Marcus, Nov 08 2013

A174905 Numbers with no pair (d,e) of divisors such that d < e < 2*d.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103, 106
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2010

Keywords

Comments

A174903(a(n)) = 0; complement of A005279;
sequences of powers of primes are subsequences;
a(n) = A129511(n) for n < 27, A129511(27) = 35 whereas a(27) = 37.
Also the union of A241008 and A241010 (see the link for a proof). - Hartmut F. W. Hoft, Jul 02 2015
In other words: numbers n with the property that all parts in the symmetric representation of sigma(n) have width 1. - Omar E. Pol, Dec 08 2016
Sequence A357581 shows the numbers organized in columns of a square array by the number of parts in their symmetric representation of sigma. - Hartmut F. W. Hoft, Oct 04 2022

Crossrefs

Programs

  • Haskell
    a174905 n = a174905_list !! (n-1)
    a174905_list = filter ((== 0) . a174903) [1..]
    -- Reinhard Zumkeller, Sep 29 2014
  • Maple
    filter:= proc(n)
      local d,q;
       d:= numtheory:-divisors(n);
       min(seq(d[i+1]/d[i],i=1..nops(d)-1)) >= 2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 08 2014
  • Mathematica
    (* it suffices to test adjacent divisors *)
    a174905[n_] := Module[{d = Divisors[n]}, ! Apply[Or, Map[2 #[[1]] > #[[2]] &, Transpose[{Drop[d, -1], Drop[d, 1]}]]]]
    (* Hartmut F. W. Hoft, Aug 07 2014 *)
    Select[Range[106], !MatchQ[Divisors[#], {_, d_, e_, _} /; e < 2d]& ] (* Jean-François Alcover, Jan 31 2018 *)

A120398 Sums of two distinct prime cubes.

Original entry on oeis.org

35, 133, 152, 351, 370, 468, 1339, 1358, 1456, 1674, 2205, 2224, 2322, 2540, 3528, 4921, 4940, 5038, 5256, 6244, 6867, 6886, 6984, 7110, 7202, 8190, 9056, 11772, 12175, 12194, 12292, 12510, 13498, 14364, 17080, 19026, 24397, 24416, 24514
Offset: 1

Views

Author

Tanya Khovanova, Jul 24 2007

Keywords

Comments

If an element of this sequence is odd, it must be of the form a(n)=8+p^3, else it is a(n)=p^3+q^3 with two primes p>q>2. - M. F. Hasler, Apr 13 2008

Examples

			2^3+3^3=35=a(1), 2^3+5^3=133=a(2), 3^3+5^3=152=a(3), 2^3+7^3=351=a(4).
		

Crossrefs

Subsequence of A024670.

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^3 + Prime[k]^3, {n, 15}, {k, n - 1}]]], # <= Prime[15^3] &]
  • PARI
    isA030078(n)=n==round(sqrtn(n,3))^3 && isprime(round(sqrtn(n,3)))  \\ M. F. Hasler, Apr 13 2008
    
  • PARI
    isA120398(n)={ n%2 & return(isA030078(n-8)); n<35 & return; forprime( p=ceil( sqrtn( n\2+1,3)),sqrtn(n-26.5,3), isA030078(n-p^3) & return(1))} \\ M. F. Hasler, Apr 13 2008
    
  • PARI
    for( n=1,10^6, isA120398(n) & print1(n",")) \\ - M. F. Hasler, Apr 13 2008
    
  • PARI
    list(lim)=my(v=List()); lim\=1; forprime(q=3,sqrtnint(lim-8,3), my(q3=q^3); forprime(p=2,min(sqrtnint(lim-q3,3),q-1), listput(v,p^3+q3))); Set(v) \\ Charles R Greathouse IV, Mar 31 2022

Formula

A120398 = (A030078 + A030078) - 2*A030078 = 8+(A030078\{8}) U { A030078(m)+A030078(n) ; 1M. F. Hasler, Apr 13 2008

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A098999 Sum of cubes of the first n primes.

Original entry on oeis.org

8, 35, 160, 503, 1834, 4031, 8944, 15803, 27970, 52359, 82150, 132803, 201724, 281231, 385054, 533931, 739310, 966291, 1267054, 1624965, 2013982, 2507021, 3078808, 3783777, 4696450, 5726751, 6819478, 8044521, 9339550, 10782447
Offset: 1

Views

Author

Suzanne O' Regan (s.m.oregan(AT)student.ucc.ie), Nov 06 2004

Keywords

Crossrefs

Partial sums of A030078.

Programs

  • Mathematica
    P3[n_]:=Sum[Prime[i]^3, {i, 1, n}];Table[P3[n], {n, 1, 60}]
  • PARI
    a(n) = sum(i=1, n, prime(i)^3); \\ Michel Marcus, Jan 20 2014

Formula

a(n) = 0.25*n^4*log(n)^3 + O(n^4*log(n)^2*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev). - Vladimir Shevelev, Aug 02 2013

A095904 Triangular array of natural numbers (greater than 1) arranged by prime signature.

Original entry on oeis.org

2, 3, 4, 5, 9, 6, 7, 25, 10, 8, 11, 49, 14, 27, 12, 13, 121, 15, 125, 18, 16, 17, 169, 21, 343, 20, 81, 24, 19, 289, 22, 1331, 28, 625, 40, 30, 23, 361, 26, 2197, 44, 2401, 54, 42, 32, 29, 529, 33, 4913, 45, 14641, 56, 66, 243, 36, 31, 841, 34, 6859, 50, 28561, 88, 70
Offset: 0

Views

Author

Alford Arnold, Jul 10 2004

Keywords

Comments

The unit, 1, has the empty prime signature { } (thus not in triangle).
Downwards diagonals:
* Rightmost diagonal: smallest numbers of a given prime signature in increasing order (A025487). This defines the order of signatures used.
This special ordering of prime signatures (by increasing smallest numbers of a given prime signature, A181087) is unrelated to any of the 8 variants of graded lexicographic or colexicographic orderings (based on the exponents only) since it depends on the magnitudes of the prime numbers. It is not even graded by Omega(n).
* Second rightmost diagonal: second smallest numbers of a given prime signature (A077560). (They are not increasing anymore.)
Upwards diagonals:
* Leftmost diagonal: primes. {1} (A000040)
* 2nd leftmost diagonal: squares of primes. {2} (A001248)
* 3rd leftmost diagonal: squarefree biprimes. {1,1} (A006881)
* 4th leftmost diagonal: cubes of primes. {3} (A030078)
* 5th leftmost diagonal: signature (Achilles numbers) {1,2} (A054753)
* 6th leftmost diagonal: fourth powers of primes. {4} (A030514)
* 7th leftmost diagonal: signature (Achilles numbers) {1,3} (A065036)
* 8th leftmost diagonal: squarefree triprimes. {1,1,1} (A007304)
The Achilles numbers are nonsquarefree while not perfect powers.
Prime signatures are often expressed in increasing order of exponents. The decreasing order of exponents (as on the Wiki page, see links) has the advantage of listing the exponents in the same order (with the canonical factorization convention) as the smallest number of a given prime signature.

Examples

			343 is in the 4th left- and 4th rightmost diagonal, because it is the 4th value with the 4th prime signature {3}.
First 8 rows of triangular array (Cf. table link for this sequence):
                                   2
                              3         4
                         5         9         6
                    7        25        10         8
               11       49        14        27        12
          13      121        15       125        18        16
     17       169       21       343        20        81        24
19       289       22       1331       28       625        40        30
		

Crossrefs

Extensions

Extended by Ray Chandler, Jul 31 2004
Corrected (minor) by Daniel Forgues, Jan 21 2011
Example, comments by Daniel Forgues, Jan 21 2011
Edited by Alois P. Heinz, Jan 23 2011
Edited by Daniel Forgues, Jan 23 2011

A229125 Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 147, 148, 149
Offset: 1

Views

Author

Chris Boyd, Sep 14 2013

Keywords

Comments

No term is the product of two other terms.
Squares of terms and pairwise products of distinct terms form a subsequence of A028260.
Numbers n such that A162642(n) = 1. - Jason Kimberley, Oct 10 2016
Numbers k such that A007913(k) is a prime number. - Amiram Eldar, Jul 27 2020

Crossrefs

Programs

  • Mathematica
    With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* Harvey P. Dale, Dec 02 2014 *)
  • PARI
    test(n)=isprime(core(n))
    for(n=1,200,if(test(n), print1(n",")))
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A229125(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - Amiram Eldar, Jul 27 2020

A157289 Decimal expansion of Zeta(3)/Zeta(6).

Original entry on oeis.org

1, 1, 8, 1, 5, 6, 4, 9, 4, 9, 0, 1, 0, 2, 5, 6, 9, 1, 2, 5, 6, 9, 3, 9, 9, 7, 3, 4, 1, 6, 0, 4, 5, 4, 2, 6, 0, 5, 4, 7, 0, 2, 3, 2, 6, 0, 7, 6, 8, 6, 8, 2, 6, 1, 0, 2, 8, 3, 0, 4, 3, 1, 4, 8, 8, 7, 7, 2, 0, 5, 4, 2, 1, 1, 1, 0, 3, 1, 8, 8, 3, 9, 9, 0, 0, 2, 9, 9, 4, 8, 7, 1, 1, 8, 4, 4, 4, 9, 2, 7, 0, 1, 1, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The Product_{p = primes = A000040} (1+1/p^3), the cubic analog to A082020.

Examples

			1.181564949010256912569399734... = (1+1/2^3)*(1+1/3^3)*(1+1/5^3)*(1+1/7^3)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3)/Zeta(6)) ;
  • Mathematica
    RealDigits[Zeta[3]/Zeta[6],10,120][[1]] (* Harvey P. Dale, Jul 23 2016 *)

Formula

Equals A002117/A013664 = Product_{i} (1+1/A030078(i)).
Equals Sum_{k>=1} 1/A062838(k) = Sum_{k>=1} 1/A005117(k)^3. - Amiram Eldar, May 22 2020

A195086 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 2.

Original entry on oeis.org

8, 24, 27, 36, 40, 54, 56, 88, 100, 104, 120, 125, 135, 136, 152, 168, 180, 184, 189, 196, 225, 232, 248, 250, 252, 264, 270, 280, 296, 297, 300, 312, 328, 343, 344, 351, 375, 376, 378, 396, 408, 424, 440, 441, 450, 456, 459, 468, 472, 484, 488
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

From Amiram Eldar, Nov 07 2020: (Start)
Numbers whose powerful part (A057521) is either a cube of a prime (A030078) or a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is (6/Pi^2) * (Sum_{p prime} 1/(p^2*(p+1)) + Sum_{p=4} (-1)^(k+1)*(k-1)*P(k) + (Sum_{k>=2} (-1)^k*P(k))^2)/2 = 0.0963023158..., where P is the prime zeta function. (End)

Crossrefs

Programs

  • Haskell
    a195086 n = a195086_list !! (n-1)
    a195086_list = filter ((== 2) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[500],PrimeOmega[#]-PrimeNu[#]==2&]
  • PARI
    is(n)=bigomega(n)-omega(n)==2 \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n)=my(f=factor(n)[,2]); vecsum(f)==#f+2 \\ Charles R Greathouse IV, Aug 01 2016
    

Formula

A001222(a(n)) - A001221(a(n)) = 2.
A046660(a(n)) = 2. - Reinhard Zumkeller, Nov 29 2015

A083686 a(0) = 8; for n>0, a(n) = 2*a(n-1) - 1.

Original entry on oeis.org

8, 15, 29, 57, 113, 225, 449, 897, 1793, 3585, 7169, 14337, 28673, 57345, 114689, 229377, 458753, 917505, 1835009, 3670017, 7340033, 14680065, 29360129, 58720257, 117440513, 234881025, 469762049, 939524097, 1879048193, 3758096385, 7516192769, 15032385537
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

An Engel expansion of 2/7 to the base 2 as defined in A181565, with the associated series expansion 2/7 = 2/8 + 2^2/(8*15) + 2^3/(8*15*29) + 2^4/(8*15*29*57) + ... . - Peter Bala, Oct 29 2013
The initial 8 is the only cube in this sequence. - Antti Karttunen, Sep 24 2023

Crossrefs

Programs

  • Magma
    [7*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
    
  • Mathematica
    7*2^Range[0, 50] + 1 (* Paolo Xausa, Apr 02 2024 *)
  • PARI
    Vec((8-9*x)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Sep 20 2016
    
  • PARI
    a(n)=7<Charles R Greathouse IV, Sep 20 2016

Formula

a(n) = 7*2^n + 1. - David Brotherton (dbroth01(AT)aol.com), Jul 29 2003
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f.: (8-9*x) / ((1-x)*(1-2*x)). - Colin Barker, Sep 20 2016
E.g.f.: exp(x)*(1 + 7*exp(x)). - Stefano Spezia, Oct 08 2022
For n >= 0, A005940(a(n)) = A030078(1+n). - Antti Karttunen, Sep 24 2023
Previous Showing 31-40 of 191 results. Next