cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A004798 Convolution of Fibonacci numbers 1,2,3,5,... with themselves.

Original entry on oeis.org

1, 4, 10, 22, 45, 88, 167, 310, 566, 1020, 1819, 3216, 5645, 9848, 17090, 29522, 50793, 87080, 148819, 253610, 431086, 731064, 1237175, 2089632, 3523225, 5930668, 9968122, 16730830, 28045221, 46954360, 78524159, 131181406, 218933030, 365044788, 608135635, 1012268592
Offset: 1

Views

Author

Keywords

Comments

From Emeric Deutsch, Feb 15 2010: (Start)
a(n) is the number of subwords of the form 0000 in all binary words of length n+3 that have no pair of adjacent 1's. Example: a(2)=4 because in the 13 (=A000045(7)) binary words of length 5 that have no pair of adjacent 1's, namely 00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100, 10101, we have 2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 = 4 subwords of the form 0000.
a(n) = Sum_{k>=0} k*A171855(n + 3,k). (End)
a(n) is the total number of 0's in all binary words of length n that have no pair of adjacent 1's. Example: a(5) = 45 because in the binary words listed in the above example there are respectively 5 + 4 + 4 + 4 + 3 + 4 + 3 + 3 + 4 + 3 + 3 + 3 + 2 = 45. - Geoffrey Critzer, Jul 22 2013

Examples

			a(6) = 45 + 22 + A000045(6+2) = 45 + 22 + 21 = 88. - _Philippe Deléham_, Jan 22 2012
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> (n*Lucas(1,-1,n+3)[2] - 2*Fibonacci(n))/5); # G. C. Greubel, Jul 07 2019
  • Magma
    I:=[1,4,10,22]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 08 2018
    
  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<0, 1, 4, 10>>)[1, 1]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 04 2013
    # Alternative:
    a := n -> n*(hypergeom([-(n+1)/2,-n/2],[-n-1],-4) - hypergeom([(1-n)/2,1-n/2],[-n], -4)): seq(simplify(a(n)), n=1..40); # Peter Luschny, Apr 10 2018
  • Mathematica
    nn=40; Drop[CoefficientList[Series[D[(1+x)/(1-y x -y x^2),y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Jul 22 2013 *)
    Table[n Fibonacci[n] + 2/5 (n LucasL[n] - Fibonacci[n]), {n, 40}] (* Vladimir Reshetnikov, Sep 27 2016 *)
    a[n_] := ListConvolve[f = Fibonacci[Range[2, n+1]], f][[1]]; Array[a, 40] (* Jean-François Alcover, Feb 15 2018 *)
    LinearRecurrence[{2, 1, -2, -1}, {1, 4, 10, 22}, 40] (* Vincenzo Librandi, Apr 08 2014 *)
  • PARI
    Vec(((1+x)/(1-x-x^2))^2+O(x^66)) \\ Joerg Arndt, Jul 04 2013
    
  • Sage
    [(n*lucas_number2(n+3,1,-1) - 2*fibonacci(n))/5 for n in (1..40)] # G. C. Greubel, Jul 07 2019
    

Formula

O.g.f.: (x+1)^2*x/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = a(n-1) + a(n-2) + Fibonacci(n+2). - Philippe Deléham, Jan 22 2012
O.g.f. is the derivative of A(x,y) with respect to y and then evaluated at y = 1, where A(x,y) is the o.g.f. for A030528. - Geoffrey Critzer, Jul 22 2013
a(n) = A001629(n+1) + A001629(n-1) + 2*A001629(n). - R. J. Mathar, Oct 30 2015
a(n) = n*Fibonacci(n) + (2/5)*(n*Lucas(n) - Fibonacci(n)) = A045925(n) + 2*A001629(n), where Lucas = A000032, Fibonacci = A000045. - Vladimir Reshetnikov, Sep 27 2016
a(n) = Sum_{i=0..floor((n+1)/2)} binomial(n+1-i,i)*(n-i). - John M. Campbell, Apr 07 2018
From Peter Luschny, Apr 10 2018: (Start)
a(n) = n*(hypergeom([-(n+1)/2, -n/2], [-n - 1], -4) - hypergeom([(1-n)/2, 1 - n/2], [-n], -4)).
a(n) = n*A000045(n+2) - A001629(n+1). (End)
E.g.f.: exp(x/2)*(35*x*cosh(sqrt(5)*x/2) + sqrt(5)*(15*x - 4)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A155020 a(n) = 2*a(n-1) + 2*a(n-2) for n > 2, a(0)=1, a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2009

Keywords

Comments

Equals 1 followed by A028859. - Klaus Brockhaus, Jul 18 2009
a(n) is the number of ways to arrange 1- and 2-cent postage stamps (totaling n cents) in a row so that the first stamp is correctly placed and any subsequent stamp may (or not) be placed upside down.
Number of compositions of n into parts k >= 1 where there are F(k+1) = A000045(k+1) sorts of part k. - Joerg Arndt, Sep 30 2012
a(n) is the top-left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 1, 1].
From Tom Copeland, Nov 08 2014: (Start)
(Setting a(0)=0.)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t) = x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = (1-sqrt(1-4x))/2; and its inverse Cinv(x) = x*(1-x). (Cf. A091867.)
O.g.f.: G(x) = -P(P(Cinv(-x),1),1) = -P(Cinv(-x),2) = x(1+x)/(1-2x(1+x)) = (x+x^2)/(1-2(x+x^2)) = x + 3*x^2 + 8*x^3 + ... = A155020(x) with a(0)=0.
Ginv(x) = -C(P(P(-x,-1),-1)) = -C(P(-x,-2)) = (-1+sqrt(1+4*x/(1+2*x)))/2 = x*A064613(-x).
G(x) = x*(1+x) + 2*(x*(1+x))^2 + 2^2*(x*(1+x))^3 - ..., and so this array contains the row sums of A030528 * Diag(1, 2^1, 2^2, 2^3, ...). (End)
INVERT transform of Fibonacci(n+1). - Alois P. Heinz, Feb 11 2021

Examples

			a(2) = 3 because we have {1,1}, {1,_1} and {2}.
a(3) = 8 because we can order the stamps in eight ways: {1,1,1}  {1,1,_1}  {1,_1,1}  {1,_1,_1}  {2,1}   {2,_1}  {1,2}   {1,_2}, where _1 and _2 are upside down stamps.
a(4) = 22 = 2*3 + 2*8 because we can append 2 or _2 to the a(2) examples and 1 or _1 to the a(3) examples. - _Jon Perry_, Nov 10 2014
		

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1: this sequence (m=2), A155116 (m=3), A155117 (m=4), A155119 (m=5), A155127 (m=6), A155130 (m=7), A155132 (m=8), A155144 (m=9), A155157 (m=10).
Cf. A028859 (essentially the same sequence). - Klaus Brockhaus, Jul 18 2009
Row sums of A155112.

Programs

  • Magma
    I:=[1,1,3,8]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*combinat[fibonacci](1+i), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    CoefficientList[Series[(1 -x -x^2)/(1 -2x -2x^2), {x,0,20}], x]
    With[{m=2}, LinearRecurrence[{m, m}, {1, m-1, m^2-1}, 30]] (* G. C. Greubel, Mar 25 2021 *)
  • Maxima
    makelist(sum(binomial(n-k,k)*2^(n-k-1),k,0,floor(n/2)),n,1,12); /* Emanuele Munarini, Feb 04 2014 */
    
  • PARI
    Vec( (1-x-x^2)/(1-2*x-2*x^2) + O(x^66) )  /* Joerg Arndt, Sep 30 2012 */
    
  • Sage
    [1]+[(-1)*(sqrt(2)*i)^(n-2)*chebyshev_U(n, -sqrt(2)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021

Formula

G.f.: (1 - x - x^2)/(1 - 2*x - 2*x^2).
G.f.: 1/( 1 - Sum_{k>=1} (x+x^2)^k ) - 1/( 1 - Sum_{k>=1} F(k+1)*x^k ) where F(k) = A000045(k). - Joerg Arndt, Sep 30 2012
a(n+1) = Sum_{k=0..n} A154929(n,k) = A028859(n).
a(n) = Sum_{k=0..floor(n/2)} ( binomial(n-k,k)*2^(n-k-1) ) for n > 0. - Emanuele Munarini, Feb 04 2014
a(n) = (1/2)*[n=0] - (sqrt(2)*i)^(n-2)*ChebyshevU(n, -sqrt(2)*i/2). - G. C. Greubel, Mar 25 2021
E.g.f.: (3 + exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)))/6. - Stefano Spezia, Mar 02 2024

A300453 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0

Views

Author

Keywords

Comments

This is essentially the usual Pascal triangle A007318, horizontally shifted and with the first three columns altered.
Let P(n;x) = (x + 1)^n + x^2 - 1. Then P(n;x) = P(n-1;x) + x*(x + 1)^(n - 1), with P(0;x) = x^2.
Let a (2,n)-torus knot be projected on the plane. The resulting projection is a planar diagram with n double points. Then, T(n,k) gives the number of state diagrams having k components that are obtained by deleting each double point, then pasting the edges in one of the two ways as shown below.
\ / \_/ \ / \ /
(1) \/ ==> (2) \/ ==> | |
/\ _ /\ | |
/ \ / \ / \ / \
See example for the case n = 2.

Examples

			The triangle T(n,k) begins
n\k  0   1   2    3     4     5     6     7     8     9    10   11  12  13 14
0:   0   0   1
1:   0   1   1
2:   0   2   2
3:   0   3   4    1
4:   0   4   7    4     1
5:   0   5  11   10     5     1
6:   0   6  16   20    15     6     1
7:   0   7  22   35    35    21     7     1
8:   0   8  29   56    70    56    28     8     1
9:   0   9  37   84   126   126    84    36     9     1
10:  0  10  46  120   210   252   210   120    45    10     1
11:  0  11  56  165   330   462   462   330   165    55    11    1
12:  0  12  67  220   495   792   924   792   495   220    66   12   1
13:  0  13  79  286   715  1287  1716  1716  1287   715   286   78  13   1
14:  0  14  92  364  1001  2002  3003  3432  3003  2002  1001  364  91  14  1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
                                    ____  ____
                                   /    \/    \
                                  /     /\     \
                                 |     |  |     |
                                 |     |  |     |
                                  \     \/     /
                                   \____/\____/
                           ___    ____         __________
                         /    \  /    \       /    __    \
                        /     /  \     \     /    /  \    \
                       |      |  |      |   |     |  |     |
                       |      |  |      |   |     |  |     |
                        \      \/      /     \     \/     /
                         \_____/\_____/       \____/\____/
      ____    ____        ____    ____        ____________        __________
     /    \  /    \      /    \  /    \      /     __     \      /    __    \
    /     /  \     \    /     /  \     \    /     /  \     \    /    /  \    \
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
    \     \  /     /    \     \__/     /    \     \  /     /    \    \__/    /
     \____/  \____/      \____________/      \____/  \____/      \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
		

References

  • Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
  • Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.

Crossrefs

Row sums: A000079 (powers of 2).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles: A030528 (row 5), A256130 (row 3), A128908 (row 3), A186084 (row 6), A284938 (row 7), A101603 (row 3), A155112 (row 3), A257566 (row 3).

Programs

  • Mathematica
    f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
    CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
  • Maxima
    P(n, x) := (x + 1)^n + x^2 - 1$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
    T;
    
  • PARI
    row(n) = Vecrev((x + 1)^n + x^2 - 1);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A001477(n).
T(n,2) = A152947(n).
T(n,k) = A007318(n,k-1), k >= 1.
T(n,0) = 0, T(0,1) = 1, T(0,2) = 1 and T(n,k) = T(n-1,k) + A007318(n-1,k-1).
G.f.: (x^2 + y*x/(1 - y*(x + 1)))/(1 - y).

A039717 Row sums of convolution triangle A030523.

Original entry on oeis.org

1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
With offset 0 = INVERT transform of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to a family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x*(1-x)/(1 + (t-1)*x*(1-x)). See A091867 for more info on this family. Here t = -4 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f.: G(x) = x*(1-x)/(1 - 5x*(1-x)) = P(Cinv(x),-5).
Inverse O.g.f.: Ginv(x) = (1 - sqrt(1 - 4*x/(1+5x)))/2 = C(P(x,5)) (signed A026378). Cf. A030528. (End)
p-INVERT of (2^n), where p(s) = 1 - s - s^2; see A289780. - Clark Kimberling, Aug 10 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015

Formula

G.f.: x*(1-x)/(1-5*x+5*x^2) = g1(3, x)/(1-g1(3, x)), g1(3, x) := x*(1-x)/(1-2*x)^2 (g.f. first column of A030523).
From Paul Barry, Apr 16 2004: (Start)
Binomial transform of Fibonacci(2n+2).
a(n) = (sqrt(5)/2 + 5/2)^n*(3*sqrt(5)/10 + 1/2) - (5/2 - sqrt(5)/2)^n*(3*sqrt(5)/10 - 1/2). (End)
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)*sin(r*Pi/2)*(2*cos(r*Pi/10))^(2*n).
a(n) = 5*a(n-1) - 5*a(n-2).
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(n, i)*binomial(k+i+1, 2k+1). - Paul Barry, Jun 22 2004
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Limit_{n->oo} A020876(n)/A093131(n) = sqrt(5).
(End)
From Benito van der Zander, Nov 19 2015: (Start)
Limit_{k->oo} a(k+1)/a(k) = 1 + phi^2 = (5 + sqrt(5)) / 2.
a(n) = a(n-1) * 3 + A081567(n-2) (not proved).
(End)
E.g.f.: exp(x*5/2) * (cosh(x*sqrt(5)/2) + (3/sqrt(5))*sinh(x*sqrt(5)/2)). - Fabian Pereyra, Oct 29 2024

A104597 Triangle T read by rows: inverse of Motzkin triangle A097609.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008

Examples

			1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
		

Crossrefs

Row sums are A009116 with different signs.
Row sums are A146559(n).

Programs

  • Maple
    # Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
    InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
  • Maxima
    T(n,m):=sum(binomial(m,j)*sum(binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1),k,0,n)*(-1)^(m-j),j,0,m); /* Vladimir Kruchinin, Apr 08 2011 */

Formula

T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011
T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013
T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013
From Tom Copeland, Nov 04 2014: (Start)
O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t).
Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2.
The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End)

A098925 Distribution of the number of ways for a child to climb a staircase having r steps (one step or two steps at a time).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 1, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 1, 36, 210, 462, 495, 286, 91
Offset: 0

Views

Author

Alford Arnold, Oct 19 2004

Keywords

Comments

Note that the row sums in the example yield the terms of Fibonacci's sequence(A000045). Were the child capable of taking three steps at a time, the row sums of the resulting table would add to the tribonacci sequence (A000073) etc.
Essentially the same as A030528 (without the 0's), where one can find additional information. - Emeric Deutsch, Mar 29 2005
Triangle T(n,k), with zeros omitted, given by (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 08 2012
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014

Examples

			There are 13 ways for the child to climb a staircase with six steps since the partitions of 6 into 1's and 2's are 222, 2211, 21111 and 111111; and these can be permuted in 1 + 6 + 5 + 1 = 13 ways.
The general cases can be readily shown by displacing Pascal's Triangle (A007318) as follows:
1
..1
..1..1
.....2..1
.....1..3..1
........3..4..1
........1..6..5..1
Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 1, 1
0, 0, 2, 1
0, 0, 1, 3, 1
0, 0, 0, 3, 4, 1
0, 0, 0, 1, 6, 5, 1 - _Philippe Deléham_, Feb 08 2012
		

References

  • Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019. See Ex. 14.

Crossrefs

All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. - N. J. A. Sloane, May 29 2011

Programs

  • Maple
    T:=(n,k)->sum((-1)^(n+i)*binomial(n,i)*binomial(i+k+1,2*k+1),i=0..n): 1,1,seq(seq(T(n,k),k=floor(n/2)..n),n=1..16); # Emeric Deutsch, Mar 29 2005
  • Mathematica
    nn = 15; f[list_] := Select[list, # > 0 &];
    Map[f, CoefficientList[Series[1/(1 - y x - y x^2), {x, 0, nn}], {x, y}]] // Flatten  (* Geoffrey Critzer, Dec 27 2011*)
    Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}] // Flatten (* Robert G. Wilson v, May 03 2017 *)

Formula

T(n,k) = abs(A092865(n,k)).
O.g.f.: 1/(1-y*x-y*x^2). - Geoffrey Critzer, Dec 27 2011.

Extensions

More terms from Emeric Deutsch, Mar 29 2005

A154929 A Fibonacci convolution triangle.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 8, 22, 21, 8, 1, 13, 45, 59, 36, 10, 1, 21, 88, 147, 124, 55, 12, 1, 34, 167, 339, 366, 225, 78, 14, 1, 55, 310, 741, 976, 770, 370, 105, 16, 1, 89, 566, 1557, 2422, 2337, 1443, 567, 136, 18, 1, 144, 1020, 3174, 5696, 6505, 4920, 2485
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Row sums are A028859. Diagonal sums are A141015(n+1). Inverse is A154930. Product of A030528 and A007318.
Transforms sequence m^n with g.f. 1/(1-m*x) to the sequence with g.f. (1+x)/(1-(m+1)x-(m+1)x^2).
Subtriangle of triangle T(n,k), given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. This triangle is the Riordan array (1, x(1+x)/(1-x-x^2)). - Philippe Deléham, Jan 25 2012

Examples

			Triangle begins
   1;
   2,   1;
   3,   4,   1;
   5,  10,   6,   1;
   8,  22,  21,   8,   1;
  13,  45,  59,  36,  10,   1;
  21,  88, 147, 124,  55,  12,   1;
  34, 167, 339, 366, 225,  78,  14,  1;
  55, 310, 741, 976, 770, 370, 105, 16, 1;
Production array is
     2,    1;
    -1,    2,   1;
     3,   -1,   2,   1;
   -10,    3,  -1,   2,  1;
    36,  -10,   3,  -1,  2,  1;
  -137,   36, -10,   3, -1,  2, 1;
   543, -137,  36, -10,  3, -1, 2, 1;
or ((1+x+sqrt(1+6x+5x^2))/2,x) beheaded.
T(5,3) = T(4,3) + T(4,2) + T(3,3) + T(3,2) = 8 + 21 + 1 + 6 = 36. - _Philippe Deléham_, Jan 18 2009
From _Philippe Deléham_, Jan 25 2012: (Start)
Triangle (0,2,-1/2,-1/2,0,0,0,...) DELTA (1,0,0,0,0,0,...) begins:
  1;
  0,   1;
  0,   2,   1;
  0,   3,   4,   1;
  0,   5,  10,   6,   1;
  0,   8,  22,  21,   8,   1;
  0,  13,  45,  59,  36,  10,   1;
  0,  21,  88, 147, 124,  55,  12,   1; (End)
		

Programs

  • Mathematica
    Table[Sum[Binomial[j + 1, n - j] Binomial[j, k], {j, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array ((1+x)/(1-x-x^2), x(1+x)/(1-x-x^2));
Triangle T(n,k) = Sum_{j=0..n} C(j+1,n-j)*C(j,k).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(n,k)=0 if k > n. - Philippe Deléham, Jan 18 2009
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A028859(n), A125145(n), A086347(n+1) for x=0,1,2,3 respectively. - Philippe Deléham, Jan 19 2009

A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the third array in the sequence of arrays A026729, A071675 considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213743. For example, s_1(n)=binomial(n,1)=n is the first column of A213743 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213743 for n>1, etc. In particular (see comment in A213743), in cases k=6,7,8,9 s_k(n) is A064056(n+2), A064057(n+2), A064058(n+2), A000575(n+3) respectively.
Riordan array (1,x+x^2+x^3+x^4). A186332 with additional 0 column. - Ralf Stephan, Dec 31 2013

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....0....4....6....4....1
.6..|..0....0....3...10...10....5....1
.7..|..0....0....2...12...20...15....6....1
.8..|..0....0....1...12...31...35...21....7....1
.9..|..0....0....0...10...40...65...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A030528 (parts <=2), A078803 (parts <=3), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    pts := 4; # A213887
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A124644 Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Comments

Equal to A091867*A007318. - Philippe Deléham, Dec 12 2009
Exponential Riordan array [exp(2x)*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = C[Pinv(x,t)] = {1 - sqrt[1 - 4 *x /(1-x*t)]}/2 where C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108 with inverse Cinv(x) = x*(1-x), and Pinv(x,t)= -P(-x,t) = x/(1-t*x) with inverse P(x,t) = 1/(1+t*x). This puts this array in a family of arrays formed from the composition of C and P and their inverses. -G(-x,t) is the comp. inverse of the o.g.f. of A030528.
This is an Appell sequence with lowering operator d/dt p(n,t) = n*p(n-1,t) and (p(.,t)+a)^n = p(n,t+a). The e.g.f. has the form e^(x*t)/w(t) where 1/w(t) is the e.g.f. of the first column, which is the Catalan sequence A000108. (End)

Examples

			From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
   1,
   1,  1,
   2,  2,  1,
   5,  6,  3,  1,
  14, 20, 12,  4,  1,
  42, 70, 50, 20,  5,  1 (End)
		

Crossrefs

Cf. A098474 (mirror image), A000108, A091867, A030528, A104597.
Row sums give A007317(n+1).

Programs

  • Maple
    m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
  • Mathematica
    Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Sage
    def A124644(n,k):
        return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
    for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015

Formula

T(n,k) = [x^(n-k)]F(-n,n-k+1;1;-1-x). - Paul Barry, Sep 05 2008
G.f.: 1/(1-xy-x/(1-x/(1-xy-x/(1-x/(1-xy-x/(1-x.... (continued fraction). - Paul Barry, Jan 06 2009
G.f.: 1/(1-x-xy-x^2/(1-2x-xy-x^2/(1-2x-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
T(n,k) = Sum_{i = 0..n} C(n,i)*(-1)^(n-i)*Sum{j = 0..i} C(j,k)*C(i,j)*A000108(i-j). - Paul Barry, Aug 03 2009
Sum_{k = 0..n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. T(n,k)= A007318(n,k)*A000108(n-k). - Philippe Deléham, Dec 12 2009
E.g.f.: exp(2*x + x*y)*(Bessel_I(0,2*x) - Bessel_I(1,2*x)). - Paul Barry, Mar 10 2010
From Tom Copeland, Nov 08 2014: (Start)
O.g.f.: G(x,t) = C[P(x,t)] = [1 - sqrt(1-4*x / (1-t*x))] / 2 = Sum_{n >= 1} (C. + t)^(n-1) * x^n] = x + (1 + t) x^2 + (2 + 2t + t^2) x^3 + ... umbrally, where (C.)^n = C_n = (1,1,2,5,8,...) = A000108(x), C(x)= x*A000108(x)= G(x,0), and P(x,t) = x/(1 + t*x), a special linear fractional (Mobius) transformation. P(x,-t)= -P(-x,t) is the inverse of P(x,t).
Inverse o.g.f.: Ginv(x,t) = P[Cinv(x),-t] = x*(1-x) / [1 - t*x(1-x)] = -A030528(-x,t), where Cinv(x) = x*(1-x) is the inverse of C(x).
G(x,t) = x*A091867(x,t+1), and Ginv(x,t) = x*A104597(x,-(t+1)). (End)
T(n, k) = (-1)^(n-k)*Catalan(n-k)*Pochhammer(-n,n-k)/(n-k)!. - Peter Luschny, Feb 05 2015
Recurrence: T(n, 0) = Catalan(n) = 1/(n+1)*binomial(2*n, n) and, for 1 <= k <= n, T(n, k) = (n/k) * T(n-1, k-1). - Peter Bala, Feb 04 2024

Extensions

Name brought in line with the Maple program by Peter Luschny, Jun 21 2023

A213888 Triangle of coefficients of representations of columns of A213744 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 0, 5, 10, 10, 5, 1, 0, 0, 4, 15, 20, 15, 6, 1, 0, 0, 3, 18, 35, 35, 21, 7, 1, 0, 0, 2, 19, 52, 70, 56, 28, 8, 1, 0, 0, 1, 18, 68, 121, 126, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the fourth array in the sequence of arrays A026729, A071675, A213887,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213744. For example, s_1(n)=binomial(n,1)=n is the first column of A213744 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213744 for n>1, etc. In particular (see comment inA213744), in cases k=7,8,9 s_k(n) is A063262(n+2), A063263(n+2), A063264(n+2) respectively.

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....0....5...10...10....5....1
.7..|..0....0....4...15...20...15....6....1
.8..|..0....0....3...18...35...35...21....7....1
.9..|..0....0....2...19...52...70...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A213887, A030528 (parts <=2), A078803 (parts <=3), A213887 (parts <=4).

Programs

  • Maple
    pts := 5; # A213888
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025
Previous Showing 21-30 of 51 results. Next