cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 106 results. Next

A174709 Partial sums of floor(n/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Partial sums of A152467.

Examples

			a(7) = floor(0/6) + floor(1/6) + floor(2/6) + floor(3/6) + floor(4/6) + floor(5/6) + floor(6/6) + floor(7/6) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 = 2.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-4)/12) = round((2*n^2 - 8*n - 1)/24).
a(n) = floor((n-2)^2/12).
a(n) = ceiling((n+1)*(n-5)/12).
a(n) = a(n-6) + n - 5, n > 5.
From R. J. Mathar, Nov 30 2010: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8).
G.f.: -x^6 / ( (1+x)*(x^2-x+1)*(1+x+x^2)*(x-1)^3 ).
a(n) = -n/3 + 5/72 + n^2/12 + (-1)^n/24 + A057079(n+5)/6 + A061347(n)/18. (End)
a(6n) = A000567(n), a(6n+1) = 2*A000326(n), a(6n+2) = A033428(n), a(6n+3) = A049451(n), a(6n+4) = A045944(n), a(6n+5) = A028896(n). - Philippe Deléham, Mar 26 2013
a(n) = A008724(n-2). - R. J. Mathar, Jul 10 2015
Sum_{n>=6} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 13 2022

A244630 a(n) = 17*n^2.

Original entry on oeis.org

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).

Programs

Formula

G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)

A004780 Binary expansion contains 2 adjacent 1's.

Original entry on oeis.org

3, 6, 7, 11, 12, 13, 14, 15, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 70, 71, 75, 76, 77, 78, 79, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Keywords

Comments

Complement of A003714. It appears that n is in the sequence if and only if C(3n,n) is even. - Benoit Cloitre, Mar 09 2003
Since the binary representation of these numbers contains two adjacent 1's, so for these values of n, we will have (n XOR 2n XOR 3n) != 0, and thus a two player Nim game with three heaps of (n, 2n, 3n) stones will be a winning configuration for the first player. - V. Raman, Sep 17 2012
A048728(a(n)) > 0. - Reinhard Zumkeller, May 13 2014
The set of numbers x such that Or(x,3*x) <> 3*x. - Gary Detlefs, Jun 04 2024

Crossrefs

Complement: A003714.
Subsequences (apart from any initial zero-term): A001196, A004755, A004767, A033428, A277335.

Programs

  • Haskell
    a004780 n = a004780_list !! (n-1)
    a004780_list = filter ((> 1) . a048728) [1..]
    -- Reinhard Zumkeller, May 13 2014
    
  • Maple
    q:= n-> verify([1$2], Bits[Split](n), 'sublist'):
    select(q, [$0..200])[];  # Alois P. Heinz, Oct 22 2021
  • PARI
    is(n)=bitand(n,n+n)>0 \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from itertools import count, islice
    def A004780_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n&(n<<1), count(max(startvalue,1)))
    A004780_list = list(islice(A004780_gen(),30)) # Chai Wah Wu, Jul 13 2022

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 19 2012

Extensions

Offset corrected by Reinhard Zumkeller, Jul 28 2010

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)

A001479 Let p = A007645(n) be the n-th generalized cuban prime and write p = x^2 + 3*y^2; a(n) = x.

Original entry on oeis.org

0, 2, 1, 4, 2, 5, 4, 7, 8, 5, 2, 7, 10, 1, 10, 8, 2, 7, 4, 13, 1, 14, 8, 14, 11, 7, 14, 13, 16, 8, 11, 16, 17, 7, 2, 19, 4, 17, 19, 11, 1, 14, 5, 10, 22, 16, 4, 23, 20, 8, 23, 13, 10, 5, 16, 22, 20, 19, 25, 4, 11, 22, 25, 8, 26, 13, 1, 28, 28, 26, 23, 29, 28
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).

Crossrefs

Programs

  • Haskell
    a001479 n = a000196 $ head $
       filter ((== 1) . a010052) $ map (a007645 n -) $ tail a033428_list
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Mathematica
    nmax = 56; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := x /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 0; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* Jean-François Alcover, Oct 19 2011 *)
  • PARI
    do(lim)=my(v=List(), q=Qfb(1,0,3)); forprime(p=2,lim, if(p%3==2,next); listput(v, qfbsolve(q,p)[1])); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Definition revised by N. J. A. Sloane, Jan 29 2013

A140676 a(n) = n*(3*n + 4).

Original entry on oeis.org

0, 7, 20, 39, 64, 95, 132, 175, 224, 279, 340, 407, 480, 559, 644, 735, 832, 935, 1044, 1159, 1280, 1407, 1540, 1679, 1824, 1975, 2132, 2295, 2464, 2639, 2820, 3007, 3200, 3399, 3604, 3815, 4032, 4255, 4484, 4719, 4960, 5207, 5460, 5719, 5984, 6255, 6532, 6815
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

The number of peers of a cell of an n^2 X n^2 sudoku is a(n-1). - Neven Sajko, Apr 20 2016
First differences are in A016921. - Wesley Ivan Hurt, Apr 21 2016

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 4*n.
a(n) = 6*n + a(n-1) + 1 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
O.g.f.: x*(7 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, May 04 2013
E.g.f.: x*(7 + 3*x)*exp(x). - Ilya Gutkovskiy, Apr 20 2016
a(n) = A000567(n+1) - 1. - Neven Sajko, Apr 20 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 15/16 - Pi/(8*sqrt(3)) - 3*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 9/16 - Pi/(4*sqrt(3)). (End)

A140681 a(n) = 3*n*(n+6).

Original entry on oeis.org

0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, 561, 648, 741, 840, 945, 1056, 1173, 1296, 1425, 1560, 1701, 1848, 2001, 2160, 2325, 2496, 2673, 2856, 3045, 3240, 3441, 3648, 3861, 4080, 4305, 4536, 4773, 5016, 5265, 5520, 5781
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A028560(n)*3 = 3*n^2 + 18*n = n*(3*n+18).
a(n) = 6*n + a(n-1) + 15 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
from G. C. Greubel, Jul 20 2017: (Start)
G.f.: 3*x*(7 - 5*x)/(1-x)^3.
E.g.f.: 3*x*(x+7)*exp(x). (End)
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 49/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/1080. (End)

A152759 3 times 9-gonal (or nonagonal) numbers: a(n) = 3*n*(7*n-5)/2.

Original entry on oeis.org

0, 3, 27, 72, 138, 225, 333, 462, 612, 783, 975, 1188, 1422, 1677, 1953, 2250, 2568, 2907, 3267, 3648, 4050, 4473, 4917, 5382, 5868, 6375, 6903, 7452, 8022, 8613, 9225, 9858, 10512, 11187, 11883, 12600, 13338, 14097, 14877, 15678, 16500, 17343, 18207, 19092, 19998
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=21: see Comments lines of A226492.

Programs

Formula

a(n) = (21*n^2 - 15*n)/2 = 3*A001106(n).
a(n) = a(n-1) + 21*n - 18 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+6*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = n + A226491(n). - Bruno Berselli, Jun 11 2013
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: 3*exp(x)*x*(2 + 7*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A132111 Triangle read by rows: T(n,k) = n^2 + k*n + k^2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 3, 4, 7, 12, 9, 13, 19, 27, 16, 21, 28, 37, 48, 25, 31, 39, 49, 61, 75, 36, 43, 52, 63, 76, 91, 108, 49, 57, 67, 79, 93, 109, 127, 147, 64, 73, 84, 97, 112, 129, 148, 169, 192, 81, 91, 103, 117, 133, 151, 171, 193, 217, 243, 100, 111, 124, 139, 156, 175, 196, 219
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 10 2007

Keywords

Comments

Permutation of A003136, the Loeschian numbers. [This is false - some terms are repeated, the first being 49. - Joerg Arndt, Dec 18 2015]
Row sums give A132112.
Central terms give A033582.
T(n,k+1) = T(n,k) + n + 2*k + 1;
T(n+1,k) = T(n,k) + 2*n + k + 1;
T(n+1,k+1) = T(n,k) + 3*(n+k+1);
T(n,0) = A000290(n);
T(n,1) = A002061(n+1) for n>0;
T(n,2) = A117950(n+1) for n>1;
T(n,n-2) = A056107(n-1) for n>1;
T(n,n-1) = A003215(n-1) for n>0;
T(n,n) = A033428(n).
T(n,k) is the norm N(alpha) of the integer alpha = n*1 - k*omega, where omega = exp(2*Pi*i/3) = (-1 + i*sqrt(3))/2 in the imaginary quadratic number field Q(sqrt(-3)): N = |alpha|^2 = (n + k/2)^2 + (3/4)*k^2 = n^2 + n*k + k^2 = T(n,k), with n >= 0, and k <= n. See also triangle A073254 for T(n,-k). - Wolfdieter Lang, Jun 13 2021

Examples

			From _Philippe Deléham_, Apr 16 2014: (Start)
Triangle begins:
   0;
   1,  3;
   4,  7,  12;
   9, 13,  19,  27;
  16, 21,  28,  37,  48;
  25, 31,  39,  49,  61,  75;
  36, 43,  52,  63,  76,  91, 108;
  49, 57,  67,  79,  93, 109, 127, 147;
  64, 73,  84,  97, 112, 129, 148, 169, 192;
  81, 91, 103, 117, 133, 151, 171, 193, 217, 243;
  ...
(End)
		

Crossrefs

Cf. A073254.

Programs

  • Mathematica
    Flatten[Table[n^2+k*n+k^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 10 2013 *)

A152767 3 times 10-gonal (or decagonal) numbers: a(n) = 3*n*(4*n-3).

Original entry on oeis.org

0, 3, 30, 81, 156, 255, 378, 525, 696, 891, 1110, 1353, 1620, 1911, 2226, 2565, 2928, 3315, 3726, 4161, 4620, 5103, 5610, 6141, 6696, 7275, 7878, 8505, 9156, 9831, 10530, 11253, 12000, 12771, 13566, 14385, 15228, 16095, 16986, 17901, 18840, 19803, 20790, 21801
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Comments

3*A172078(n) = n*a(n) - Sum_{k=0..n-1} a(k). - Bruno Berselli, Dec 12 2010

Examples

			For n=8, a(8) = (1*3 + 5*7 + 9*11 +..+ 29*31) - (2*4 + 6*8 + 10*12 +..+ 26*28) = 696 (see Problem 1052 in References). - _Bruno Berselli_, Dec 12 2010
		

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), Jan. 1910 p. 47 (Problem 1052).

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=24: see Comments lines of A226492.

Programs

Formula

a(n) = 12*n^2 - 9*n = 3*A001107(n).
a(n) = a(n-1) + 24*n - 21, n > 0. - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k=0..n-1} A001539(k) - Sum_{k=0..n-1} 4*A002939(k) if n > 0 (see References, Problem 1052). - Bruno Berselli, Dec 08 2010 - Jan 21 2011
G.f.: -3*x*(1+7*x)/(x-1)^3.
a(0)=0, a(1)=3, a(2)=30, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 26 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 4*x).
a(n) = A153794(n) - n. (End)
Previous Showing 21-30 of 106 results. Next