cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A008548 Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).

Original entry on oeis.org

1, 1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, 1213563326976, 61891729675776, 3465936861843456, 211422148572450816, 13953861805781753856, 990724188210504523776, 75295038303998343806976, 6098898102623865848365056, 524505236825652462959394816
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing sextic (6-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007
Hankel transform is A169620. - Paul Barry, Dec 03 2009

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n], k-> 5*k+1)); # G. C. Greubel, Aug 16 2019
  • Magma
    [(&*[5*k+1: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 16 2019
    
  • Maple
    a := n -> mul(5*k+1, k=0..n-1);
    G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 03 2009
    H := hypergeom([1, 1/5], [], 5*x):
    seq(coeff(series(H,x,20),x,n),n=0..16); # Peter Luschny, Oct 08 2015
  • Mathematica
    Table[Product[5k+1,{k,0,n-1}],{n,0,20}]  (* Harvey P. Dale, Apr 23 2011 *)
    FoldList[Times,1,NestList[#+5&,1,20]] (* Ray Chandler, Apr 23 2011 *)
    FoldList[Times,1,5Range[0, 25] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ Joerg Arndt, Apr 24 2011
    
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ Altug Alkan, Oct 08 2015
    
  • Sage
    [product(5*k+1 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 16 2019
    

Formula

a(n) = A049385(n, 1) (first column of triangle).
E.g.f.: (1-5*x)^(-1/5).
a(n) ~ 2^(1/2)*Pi^(1/2)*gamma(1/5)^-1*n^(-3/10)*5^n*e^-n*n^n*{1 + 1/300*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-5)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1-x/(1-5x/(1-6x/(1-10x/(1-11x/(1-15x/(1-16x/(1-20x/(1-21x/(1-25x/(1-.../(1-A008851(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n)=(-4)^n*Sum_{k=0..n} (5/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(5*k+1)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+1)*x/((5*k+1)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = (10n-18)*a(n-2) + (5n-6)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 12 2013
Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( Integral_{t = 0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/5], [], 5*x). - Peter Luschny, Oct 08 2015
a(n) = 5^n * Gamma(n + 1/5) / Gamma(1/5). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^4)^(1/5)*(Gamma(1/5) - Gamma(1/5, 1/5)). - Amiram Eldar, Dec 19 2022

A049382 Expansion of (1-25*x)^(-4/5).

Original entry on oeis.org

1, 20, 450, 10500, 249375, 5985000, 144637500, 3512625000, 85620234375, 2092939062500, 51277007031250, 1258617445312500, 30941012197265625, 761624915625000000, 18768613992187500000, 462959145140625000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Examples

			(1-x)^(-4/5) = 1 + 4/5*x + 18/25*x^2 + 84/125*x^3 + ...
		

Crossrefs

Programs

Formula

G.f.: (1-25*x)^(-4/5).
a(n) = (5^n/n!) * Product_{k=0..n-1} (5*k + 4).
a(n) ~ Gamma(4/5)^-1*n^(-1/5)*5^(2*n)*{1 - 2/25*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Product_{k=1..n} (25 - 5/k). - Michel Lagneau, Sep 16 2012
a(n) = (-25)^n*binomial(-4/5, n). - Peter Luschny, Oct 23 2018
From Peter Bala, Sep 24 2023: (Start)
a(n) = 25^n * binomial(n - 1/5, n).
P-recursive: a(n) = 5*(5*n - 1)/n * a(n-1) with a(0) = 1. (End)

A034385 Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.

Original entry on oeis.org

1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007696.
Expansion of (1-b^2*x)^(-1/b): A000984 (b=2), A004987 (b=3), this sequence (b=4), A034688 (b=5), A004993 (b=6), A034835 (b=7), A034977 (b=8), A035024 (b=9), A035308 (b=10).

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = (4^n/n!)*A007696(n), n >= 1, a(0) := 1, A007696(n) = (4*n-3)!^4 := Product_{j = 1..n} 4*j - 3.
G.f.: (1 - 16*x)^(-1/4).
D-finite with recurrence: n*a(n) + 4*(-4*n + 3)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n*binomial(-1/4, n).
a(n) ~ Gamma(3/4)/(sqrt(2)*Pi) * 16^n/n^(3/4).
E.g.f.: hypergeom([1/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/4, k)* binomial(-1/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (4^n)*binomial(2*n, n) = A098430.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = (16^n)*binomial(4*n, 2*n). (End)

A049381 Expansion of (1-25*x)^(-3/5).

Original entry on oeis.org

1, 15, 300, 6500, 146250, 3363750, 78487500, 1850062500, 43938984375, 1049653515625, 25191684375000, 606890578125000, 14666522304687500, 355381117382812500, 8630684279296875000, 210013317462890625000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Examples

			(1-x)^(-3/5) = 1 + 3/5*x + 12/25*x^2 + 52/125*x^3 + ...
		

Crossrefs

Programs

Formula

G.f.: (1-25*x)^(-3/5).
a(n) = (5^n/n!) * Product_{k=0..n-1} (5*k+3).
a(n) ~ Gamma(3/5)^-1*n^(-2/5)*5^(2*n)*{1 - 3/25*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = (-25)^n*binomial(-3/5, n). - Peter Luschny, Oct 23 2018
From Peter Bala, Sep 24 2023: (Start)
a(n) = 25^n * binomial(n - 2/5, n).
P-recursive: a(n) = 5*(5*n - 2)/n * a(n-1) with a(0) = 1. (End)

A034687 Related to quintic factorial numbers A008548.

Original entry on oeis.org

1, 15, 275, 5500, 115500, 2502500, 55412500, 1246781250, 28398906250, 653174843750, 15141780468750, 353308210937500, 8289154179687500, 195387205664062500, 4624163867382812500, 109823891850341796875
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034688(n-1) with A025750(n), n >= 1.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 5^(n-1)*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
  • Magma
    [5^(n-1)*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    seq(5^(n-1)*(product(5*k+1, k = 0..n-1))/factorial(n), n = 1..20); # G. C. Greubel, Aug 17 2019
  • Mathematica
    Table[5^(2*n-1)*Pochhammer[1/5, n]/n!, {n, 20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    vector(20, n, 5^(n-1)*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [5^(n-1)*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (1..20)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = 5^(n-1)*A008548(n)/n!, where A008548(n) = (5*n-4)(!^5) = Product_{j=1..n} (5*j-4).
G.f.: (-1 + (1-25*x)^(-1/5))/5.
E.g.f.: (1/5)*L_{-1/5}(25*x) - 1, where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
a(n) ~ 5^(2*n-1) * n^(-4/5) / Gamma(1/5). - Amiram Eldar, Aug 17 2025

A049380 Expansion of (1-25*x)^(-2/5).

Original entry on oeis.org

1, 10, 175, 3500, 74375, 1636250, 36815625, 841500000, 19459687500, 454059375000, 10670395312500, 252209343750000, 5989971914062500, 142837791796875000, 3417904303710937500, 82029703289062500000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Examples

			(1-x)^(-2/5) = 1 + 2/5*x + 7/25*x^2 + 28/125*x^3 + ...
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n+1) = (10+25*n)*a(n)/(n+1),a(0)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Sep 04 2018
  • Mathematica
    CoefficientList[Series[1/Surd[(1-25x)^2,5],{x,0,20}],x] (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    x='x+O('x^99); Vec((1-25*x)^(-2/5)) \\ Altug Alkan, Sep 04 2018

Formula

G.f.: (1-25*x)^(-2/5).
a(n) = (5^n/n!) * Product_{k=0..n-1} (5*k + 2).
a(n) ~ Gamma(2/5)^(-1)*n^(-3/5)*5^(2*n)*{1 - 3/25*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n+1) = (10 + 25*n)*a(n)/(n+1). - Robert Israel, Sep 04 2018
a(n) = (-25)^n*binomial(-2/5,n). - Peter Luschny, Oct 23 2018
From Peter Bala, Sep 24 2023: (Start)
a(n) = 25^n * binomial(n - 3/5, n).
P-recursive: a(n) = 5*(5*n - 3)/n * a(n-1) with a(0) = 1. (End)

A224881 Expansion of 1/(1 - 16*x)^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
		

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), this sequence (b=16), A034688 (b=25), A298799 (b=27), A004993 (b=36), A034835 (b=49).
Cf. A301271.

Programs

  • GAP
    List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
    for(n=0,30,print1(a(n),", "))
    

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (8*k + 1).
a(n) ~ 16^n/(GAMMA(1/8)*n^(7/8)). - Vaclav Kotesovec, Jul 24 2013

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A248326 Square array read by downward antidiagonals: super Patalan numbers of order 5.

Original entry on oeis.org

1, 5, 20, 75, 50, 450, 1375, 500, 750, 10500, 27500, 6875, 5625, 13125, 249375, 577500, 110000, 61875, 78750, 249375, 5985000, 12512500, 1925000, 825000, 721875, 1246875, 4987500, 144637500, 277062500, 35750000, 12375000, 8250000, 9796875, 21375000, 103312500, 3512625000, 6233906250, 692656250
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 5, A025750.

Examples

			T(0..4,0..4) is
  1       5       75      1375    27500
  20      50      500     6875    110000
  450     750     5625    61875   825000
  10500   13125   78750   721875  8250000
  249375  249375  1246875 9796875 97968750
		

Crossrefs

Cf. A068555, A025750, A034688 (first row), A049382 (first column), A248324, A248325, A248328, A248329, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*25^(n+k)*binomial(n-1/5,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(25*n-5)/(n+k), T(n,k) = T(n,k-1)*(25*k-20)/(n+k).
G.f.: (x/(1-25*x)^(4/5)+y/(1-25*y)^(1/5))/(x+y-25*x*y).
T(n,k) = (-1)^k*25^(n+k)*binomial(n-1/5,n+k).

A380465 G.f. A(x) satisfies A(x) = 1/( 1 - 25*x*A(x)^2 )^(1/5).

Original entry on oeis.org

1, 5, 125, 4250, 166250, 7052500, 315459375, 14648437500, 699404062500, 34120414453125, 1693355782421875, 85222795492187500, 4339218139648437500, 223115431527734375000, 11568972340119140625000, 604249120575386718750000, 31761084429202554931640625, 1678825356066226959228515625
Offset: 0

Views

Author

Seiichi Manyama, Jun 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 25^n*binomial(7*n/5+1/5, n)/(7*n+1);

Formula

G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^7 )^(1/5).
a(n) = 25^n * binomial(7*n/5+1/5,n)/(7*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9).
G.f.: ( (1/x) * Series_Reversion(x/(1+25*x)^(7/5)) )^(1/7).
Showing 1-10 of 14 results. Next