cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A022521 a(n) = (n+1)^5 - n^5.

Original entry on oeis.org

1, 31, 211, 781, 2101, 4651, 9031, 15961, 26281, 40951, 61051, 87781, 122461, 166531, 221551, 289201, 371281, 469711, 586531, 723901, 884101, 1069531, 1282711, 1526281, 1803001, 2115751, 2467531
Offset: 0

Views

Author

Keywords

Comments

Last digit of a(n) is always 1. Last two digits of a(n) (i.e., a(n) mod 100) are repeated periodically with palindromic part of period 20 {1,31,11,81,1,51,31,61,81,51,51,81,61,31,51,1,81,11,31,1}. Last three digits of a(n) (i.e., a(n) mod 1000) are repeated periodically with palindromic part of period 200. - Alexander Adamchuk, Aug 11 2006
In Conway and Guy, these numbers are called nexus numbers of order 5. - M. F. Hasler, Jan 27 2013
Numbers that can be arranged in a triangular-antitegmatic icosachoron (the 4D version of "rhombic dodecahedal numbers" (A005917)). - Steven Lu, Mar 28 2023

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

First differences of A000584.
Column k=4 of array A047969.

Programs

Formula

a(n) = A003215(n) + 24 * A006322(n). - Xavier Acloque, Oct 11 2003
G.f.: (-1-x^4-26*x^3-66*x^2-26*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
G.f.: polylog(-5, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Sum_{n>=0} 1/a(n) = c1*tanh(c2/2) - c2*tanh(c1/2), where c1 = tan(3*Pi/10)*Pi and c2 = tan(Pi/10)*Pi. - Amiram Eldar, Jan 27 2022

A045531 Number of sticky functions: endofunctions of [n] having a fixed point.

Original entry on oeis.org

1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of functions f{1,2,...,n}->{1,2,...,n} with at least one element mapped to 1. - Geoffrey Critzer, Dec 10 2012
Equivalently, a(n) is the number of endofunctions with minimum 1. - Olivier Gérard, Aug 02 2016
Number of bargraphs of width n and height n. Equivalently: number of ordered n-tuples of positive integers such that the largest is n. Example: a(3) = 19 because we have 113, 123, 213, 223, 131, 132, 231, 232, 311, 312, 321, 322, 331, 332, 313, 323, 133, 233, and 333. - Emeric Deutsch, Jan 30 2017

Crossrefs

Column |a(n, 2)| of A039621. Row sums of triangle A055858.
Column k=1 of A246049.

Programs

  • Magma
    [n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
  • Maxima
    a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
  • PARI
    a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
    

Formula

a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023

A022522 Nexus numbers (n+1)^6 - n^6.

Original entry on oeis.org

1, 63, 665, 3367, 11529, 31031, 70993, 144495, 269297, 468559, 771561, 1214423, 1840825, 2702727, 3861089, 5386591, 7360353, 9874655, 13033657, 16954119, 21766121, 27613783, 34655985, 43067087, 53037649, 64775151, 78504713, 94469815, 112933017, 134176679
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=5 of array A047969.
Beginning with n=1, a subsequence of A181125 (difference of two positive 6th powers). - Mathew Englander, Jun 01 2014

Programs

Formula

G.f.: (1+x)*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^6. - Colin Barker, Dec 21 2012
a(n) = A005408(n) * A243201(n). - Mathew Englander, Jun 06 2014
a(n) = A001014(n+1) - A001014(n). - Wesley Ivan Hurt, Jun 06 2014
E.g.f.: (1 +62*x +270*x^2 +260*x^3 +75*x^4 +6*x^5)*exp(x). - G. C. Greubel, Aug 28 2019
G.f.: polylog(-6, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Colin Barker, Dec 21 2012

A022523 Nexus numbers (n+1)^7-n^7.

Original entry on oeis.org

1, 127, 2059, 14197, 61741, 201811, 543607, 1273609, 2685817, 5217031, 9487171, 16344637, 26916709, 42664987, 65445871, 97576081, 141903217, 201881359, 281651707, 386128261, 521088541, 693269347, 910467559, 1181645977, 1517044201, 1928294551, 2428543027
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

First differences of A001015.
Column k=6 of array A047969.

Programs

Formula

G.f.: -(x^6+120*x^5+1191*x^4+2416*x^3+1191*x^2+120*x+1) / (x-1)^7. - Colin Barker, Dec 21 2012
G.f.: polylog(-7, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A079547 a(n) = ((n^6 - (n-1)^6) - (n^2 - (n-1)^2))/60.

Original entry on oeis.org

0, 1, 11, 56, 192, 517, 1183, 2408, 4488, 7809, 12859, 20240, 30680, 45045, 64351, 89776, 122672, 164577, 217227, 282568, 362768, 460229, 577599, 717784, 883960, 1079585, 1308411
Offset: 1

Views

Author

Xavier Acloque, Jan 22 2003

Keywords

Comments

Polynexus numbers of order 6.
A polynexus (subtractive) function is composed of two or more subtracted nexus numbers divided by an integer x. The general form of the formula is a(n)=((n^p-(n-1)^p)-(n^q-(n-1)^q))/x, where n, p, q and x are integers.
Already known: ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24, giving A006322 for n>1; ((n^4-(n-1)^4) - (n^2-(n-1)^2))/12, giving A000330; ((n^3-(n-1)^3) - (n^1-(n-1)^1))/6, giving A000217; ((n^2-(n-1)^2) - (n^1-(n-1)^1))/2, giving n; ((n^2-(n-1)^2) - (n^0-(n-1)^0))/1, giving 2*n-1. In those examples, x is equal to 1,2,6,12,24, and 3 is also possible.
Also number of monotone n-weightings of complete bipartite digraph K(3,2) if offset were 0; cf. A085464-A085465. - Goran Kilibarda, Vladeta Jovovic, Jul 01 2003
Partial sums of A037270. - J. M. Bergot, Jun 07 2012

Crossrefs

Programs

  • GAP
    List([1..30], n-> n*(6*n^4-15*n^3+20*n^2-15*n+4)/60) # G. C. Greubel, Jun 19 2019
  • Magma
    [n*(6*n^4-15*n^3+20*n^2-15*n+4)/60: n in [1..30]]; // G. C. Greubel, Jun 19 2019
    
  • Mathematica
    Table[((n^6 -(n-1)^6) - (n^2 -(n-1)^2))/60, {n, 30}] (* Bruno Berselli, Feb 13 2012 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,11,56,192,517},30] (* Harvey P. Dale, Feb 21 2023 *)
  • PARI
    a(n) = n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 \\ Charles R Greathouse IV, Jan 16 2013
    
  • Sage
    [n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 for n in (1..30)] # G. C. Greubel, Jun 19 2019
    

Formula

a(n+1) = Sum_{i=1..n} (i^2 + i^4)/2 = n*(2*n+1)*(n+1)*(3*n^2+3*n+4)/60. - Vladeta Jovovic, Mar 17 2006
G.f.: x^2*(x+1)*(1+4*x+x^2)/(1-x)^6. - Bruno Berselli, Feb 13 2012
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^3. - Enrique Pérez Herrero, Jan 16 2013
E.g.f.: x^2*(30 + 80*x + 45*x^2 + 6*x^3)*exp(x)/60. - G. C. Greubel, Jun 19 2019

A145905 Square array read by antidiagonals: Hilbert transform of triangle A060187.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0

Views

Author

Peter Bala, Oct 27 2008

Keywords

Comments

Definition of the Hilbert transform of a triangular array:
For many square arrays in the database the entries in a row are polynomial in the column index, of degree d say and hence the row generating function has the form P(x)/(1-x)^(d+1), where P is some polynomial function. Often the array whose rows are formed from the coefficients of these P polynomials is of independent interest. This suggests the following definition.
Let [L(n,k)]n,k>=0 be a lower triangular array and let R(n,x) := sum {k = 0 .. n} L(n,k)*x^k, denote the n-th row generating polynomial of L. Then we define the Hilbert transform of L, denoted Hilb(L), to be the square array whose n-th row, n >= 0, has the generating function R(n,x)/(1-x)^(n+1).
In this particular case, L is the array A060187, the array of Eulerian numbers of type B, whose row polynomials are the h-polynomials for permutohedra of type B. The Hilbert transform is an infinite Vandermonde matrix V(1,3,5,...).
We illustrate the Hilbert transform with a few examples:
(1) The Delannoy number array A008288 is the Hilbert transform of Pascal's triangle A007318 (view as the array of coefficients of h-polynomials of n-dimensional cross polytopes).
(2) The transpose of the array of nexus numbers A047969 is the Hilbert transform of the triangle of Eulerian numbers A008292 (best viewed in this context as the coefficients of h-polynomials of n-dimensional permutohedra of type A).
(3) The sequence of Eulerian polynomials begins [1, x, x + x^2, x + 4*x^2 + x^3, ...]. The coefficients of these polynomials are recorded in triangle A123125, whose Hilbert transform is A004248 read as square array.
(4) A108625, the array of crystal ball sequences for the A_n lattices, is the Hilbert transform of A008459 (viewed as the triangle of coefficients of h-polynomials of n-dimensional associahedra of type B).
(5) A142992, the array of crystal ball sequences for the C_n lattices, is the Hilbert transform of A086645, the array of h-vectors for type C root polytopes.
(6) A108553, the array of crystal ball sequences for the D_n lattices, is the Hilbert transform of A108558, the array of h-vectors for type D root polytopes.
(7) A086764, read as a square array, is the Hilbert transform of the rencontres numbers A008290.
(8) A143409 is the Hilbert transform of triangle A073107.

Examples

			Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
		

Crossrefs

Cf. A008292, A039755, A052750 (first superdiagonal), A060187, A114172, A145901.

Programs

  • Maple
    T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);

Formula

T(n,k) = (2*k + 1)^n, (see equation 4.10 in [Franssens]). This array is the infinite Vandermonde matrix V(1,3,5,7, ....) having a LDU factorization equal to A039755 * diag(2^n*n!) * transpose(A007318).

A022524 Nexus numbers (n+1)^8 - n^8.

Original entry on oeis.org

1, 255, 6305, 58975, 325089, 1288991, 4085185, 11012415, 26269505, 56953279, 114358881, 215622815, 385749025, 660058335, 1087101569, 1732076671, 2680790145, 4044203135, 5963602465, 8616436959, 12222859361, 17053014175, 23435111745, 31764328895, 42512576449
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=7 of array A047969.

Programs

Formula

G.f.: (x+1)*(x^6+246*x^5+4047*x^4+11572*x^3+4047*x^2+246*x+1) / (x-1)^8. - Colin Barker, Dec 21 2012
G.f.: polylog(-8, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Stefan Steinerberger, Apr 09 2006
More terms from Colin Barker, Dec 21 2012

A022525 Nexus numbers (n+1)^9-n^9.

Original entry on oeis.org

1, 511, 19171, 242461, 1690981, 8124571, 30275911, 93864121, 253202761, 612579511, 1357947691, 2801832661, 5444719021, 10056547411, 17782312591, 30276117361, 49868399761, 79771413871, 124328407411, 189312302221, 282280046581, 412989171211, 593883443671
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column m=8 of A047969.

Programs

Formula

G.f.: -(x^8 +502*x^7 +14608*x^6 +88234*x^5 +156190*x^4 +88234*x^3 +14608*x^2 +502*x +1) / (x -1)^9. - Colin Barker, Dec 21 2012
G.f.: polylog(-9, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Colin Barker, Dec 21 2012

A089246 Triangular array read by rows: a(n, k) is the number of ordered m-tuples of positive integers (x_1, ..., x_m) such that max x_i = n+1-m and there are k ones (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 5, 3, 0, 1, 14, 15, 9, 4, 0, 1, 43, 50, 31, 14, 5, 0, 1, 144, 180, 118, 54, 20, 6, 0, 1, 523, 695, 481, 229, 85, 27, 7, 0, 1, 2048, 2869, 2081, 1035, 395, 125, 35, 8, 0, 1, 8597, 12616, 9535, 4929, 1951, 629, 175, 44, 9, 0, 1, 38486, 58862
Offset: 0

Views

Author

Alford Arnold, Dec 22 2003

Keywords

Comments

The row sums are given by A047970 because row n counts the same tuples as the n-th antidiagonal of A047969.

Examples

			a(5, 0) = 14: (5), (4,2), (2,4), (4,3), (3,4), (4,4),
(3,2,2), (2,3,2), (2,2,3), (3,3,2), (3,2,3), (2,3,3), (3,3,3), (2,2,2,2).
a(5, 1) = 15: (4,1), (1,4), (3,3,1), (3,1,3), (1,3,3), 6 permutations of (3,2,1) and 4 permutations of (2,2,2,1).
Triangle starts:
                             [0] 1
                           [1] 0, 1
                          [2] 1, 0, 1
                        [3] 2, 2, 0, 1
                       [4] 5, 5, 3, 0, 1
                    [5] 14, 15, 9, 4, 0, 1
                  [6] 43, 50, 31, 14, 5, 0, 1
              [7] 144, 180, 118, 54, 20, 6, 0, 1
            [8] 523, 695, 481, 229, 85, 27, 7, 0, 1
       [9] 2048, 2869, 2081, 1035, 395, 125, 35, 8, 0, 1
		

Crossrefs

First differences by column of A101494.

Formula

From Mathew Englander, Feb 25 2021: (Start)
T(n,k) = 0^(n-k) + Sum_{m = k..n-1} C(m,k) * ((n-m)^(m-k) - (n-1-m)^(m-k)).
T(n,k) = Sum_{j = k+1..n-1} C(j,k)*Sum_{i = j..n-1} T(i,j) for 0 <= k < n-1; T(k+1,k)=0 and T(k,k)=1 for k>=0.
G.f. of row n: 1 + Sum_{i = 1..n} (x+n-i)^(i-1)*(x+n-i-1). (End)

Extensions

Edited and extended by David Wasserman, Sep 07 2005

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015
Previous Showing 11-20 of 44 results. Next