cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 95 results. Next

A005276 Betrothed (or quasi-amicable) numbers.

Original entry on oeis.org

48, 75, 140, 195, 1050, 1575, 1648, 1925, 2024, 2295, 5775, 6128, 8892, 9504, 16587, 20735, 62744, 75495, 186615, 196664, 199760, 206504, 219975, 266000, 309135, 312620, 507759, 526575, 544784, 549219, 573560, 587460, 817479, 1000824, 1057595, 1081184
Offset: 1

Views

Author

Keywords

Comments

Members of a pair (m,n) such that sigma(m) = sigma(n) = m+n+1, where sigma = A000203. - M. F. Hasler, Nov 04 2008
Also members of a pair (m,k) such that m = sum of nontrivial divisors of k and k = sum of nontrivial divisors of m. - Juri-Stepan Gerasimov, Sep 11 2009
Also numbers that are terms of cycles when iterating Chowla's function A048050. - Reinhard Zumkeller, Feb 09 2013
From Amiram Eldar, Mar 09 2024: (Start)
The first pair, (48, 75), was found by Nasir (1946).
Lehmer (1948) in a review of Nasir's paper, noted that "the pair (48, 75) behave like amicable numbers".
Makowski (1960) found the next 2 pairs, and called them "pairs of almost amicable numbers".
The next 6 pairs were found by independently by Garcia (1968), who named them "números casi amigos" and Lal and Forbes (1971), who named them "reduced amicable pairs".
Beck and Wajar (1971) found 6 more pairs, but missed the 15th and 16th pairs, (526575, 544784) and (573560, 817479).
Hagis and Lord (1977) found the first 46 pairs. They called them "quasi-amicable numbers", after Garcia (1968).
Beck and Wajar (1993) found the next 33 pairs.
According to Guy (2004; 1st ed., 1981), the name "betrothed numbers" was proposed by Rufus Isaacs. (End)

References

  • Mariano Garcia, Números Casi Amigos y Casi Sociables, Revista Annal, año 1, October 1968, Asociación Puertorriqueña de Maestros de Matemáticas.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B5, pp. 91-92.
  • D. H. Lehmer, Math. Rev., Vol. 8 (1948), p. 445.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A057533.

Programs

  • Haskell
    a005276 n = a005276_list !! (n-1)
    a005276_list = filter p [1..] where
       p z = p' z [0, z] where
         p' x ts = if y `notElem` ts then p' y (y:ts) else y == z
                   where y = a048050 x
    -- Reinhard Zumkeller, Feb 09 2013
  • Mathematica
    bnoQ[n_]:=Module[{dsn=DivisorSigma[1,n],m,dsm},m=dsn-n-1; dsm= DivisorSigma[ 1,m];dsm==dsn==n+m+1]; Select[Range[2,1100000],bnoQ] (* Harvey P. Dale, May 12 2012 *)
  • PARI
    isA005276(n) = { local(s=sigma(n)); s>n+1 & sigma(s-n-1)==s }
    for( n=1, 10^6, isA005276(n) & print1(n",")) \\ M. F. Hasler, Nov 04 2008
    

Formula

Equals A003502 union A003503. - M. F. Hasler, Nov 04 2008

Extensions

Extended by T. D. Noe, Dec 29 2011

A065475 Natural numbers excluding 2.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Labos Elemer, Nov 16 2001

Keywords

Comments

From the following 4 disjoint subsets of natural numbers A = {1}, B = {2}, OP = {odd primes}, C = {composites}, 16 sets are derivable: A000027 versus empty set, A002808 vs A008578, A065091 vs A065090, A000040 vs A018252, A006005 vs {{2} with A002808}, {1} vs {A000027 excluding 1}, {2} versus this sequence, {1, 2} versus Union[OP, C].
a(n) is the sum of the obvious divisors of n, which are 1 and n.
The natural numbers excluding 2 are the order numbers of magic squares. Order 2 magic squares do not exist. - William Walkington, Mar 12 2016
The numbers occurring at least twice in Pascal's triangle (A007318, A003016). - Rick L. Shepherd, Jun 05 2016
From Enrique Navarrete, Mar 03 2025: (Start)
a(n) is the number of binary strings of length n with at most one 0 and at least one 1. For example, the a(1)=1 string is 1 and the a(2)=3 strings are 01, 10, 11.
a(n) is also the number of ordered set partitions of an n-set into 2 sets such that the first set has at most one element and the second set has at least one element. (End)

Crossrefs

Programs

  • Magma
    &cat[[1],[n : n in [3..100]]]; // Wesley Ivan Hurt, Mar 13 2016
  • Maple
    printlevel := -1; a := [1]; T := x->LambertW(-x); f := series(((1+T(x)))/(1-T(x)), x, 77); for m from 3 to 77 do a := [op(a), op(2*m, f)] od; print(a); # Zerinvary Lajos, Mar 28 2009
  • Mathematica
    Join[{1}, Range[3, 100]] (* Wesley Ivan Hurt, Mar 13 2016 *)
    Drop[Range[100],{2}] (* Harvey P. Dale, Aug 11 2024 *)
  • PARI
    a(n)=n+(n>1) \\ Charles R Greathouse IV, Sep 01 2015
    
  • PARI
    x='x+O('x^99); Vec((1+x-x^2)/(1-x)^2) \\ Altug Alkan, Mar 26 2016
    

Formula

G.f.: x*(1+x-x^2)/(1-x)^2. - Paul Barry, Aug 05 2004
a(n) = A000203(n) - A048050(n).
a(n) = n+1 for n>1, a(n) = a(n-1)+1 for n>2. - Wesley Ivan Hurt, Mar 13 2016
E.g.f.: (x + 1)*(exp(x) - 1). - Ilya Gutkovskiy, Jun 05 2016
a(n) = n + [n>1], a(n) = 1+n-floor(1/n). - Alan Michael Gómez Calderón, May 12 2023

Extensions

Incorrect formula removed by Charles R Greathouse IV, Mar 18 2010

A070015 Least m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56
Offset: 0

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

For odd n >= 9, a(n) <= A073046((n-1)/2). - Max Alekseyev, Sep 01 2025

Examples

			For n=128: a(128)=16129, divisors={1,127,16129}, 1+127=sigma(n)-n=128 and 16129 is the smallest.
		

Crossrefs

See A359132 for another version.

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]-x; t=Table[0, {128}]; Do[c=f[n]; If[c<129&&t[[c]]==0, t[[c]]=n], {n, 1000000}]; t

Formula

a(n) = min(x, A001065(x)=n) or a(n)=0 if n is an untouchable number (i.e., if from A005114).

Extensions

a(0)=1 prepended by Max Alekseyev, Sep 01 2025

A244051 Triangle read by rows in which row n lists the parts of the partitions of n into equal parts, in nonincreasing order.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 9, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 5, 5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2014

Keywords

Comments

Row n has length sigma(n) = A000203(n).
Row sums give n*A000005(n) = A038040(n).
Column 1 is A000027.
Both columns 2 and 3 are A032742, n > 1.
For any k > 0 and t > 0, the sequence contains exactly one run of k consecutive t's. - Rémy Sigrist, Feb 11 2019
From Omar E. Pol, Dec 04 2019: (Start)
The number of parts congruent to 0 (mod m) in row m*n equals sigma(n) = A000203(n).
The number of parts greater than 1 in row n equals A001065(n), the sum of aliquot parts of n.
The number of parts greater than 1 and less than n in row n equals A048050(n), the sum of divisors of n except for 1 and n.
The number of partitions in row n equals A000005(n), the number of divisors of n.
The number of partitions in row n with an odd number of parts equals A001227(n).
The sum of odd parts in row n equals the sum of parts of the partitions in row n that have an odd number of parts, and equals the sum of all parts in the partitions of n into consecutive parts, and equals A245579(n) = n*A001227(n).
The decreasing records in row n give the n-th row of A056538.
Row n has n 1's which are all at the end of the row.
First n rows contain A000217(n) 1's.
The number of k's in row n is A126988(n,k).
The number of odd parts in row n is A002131(n).
The k-th block in row n has A027750(n,k) parts.
Right border gives A000012. (End)
The r-th row of the triangle begins at index k = A160664(r-1). - Samuel Harkness, Jun 21 2022

Examples

			Triangle begins:
   [1];
   [2], [1,1];
   [3], [1,1,1];
   [4], [2,2], [1,1,1,1];
   [5], [1,1,1,1,1];
   [6], [3,3], [2,2,2], [1,1,1,1,1,1];
   [7], [1,1,1,1,1,1,1];
   [8], [4,4], [2,2,2,2], [1,1,1,1,1,1,1,1];
   [9], [3,3,3], [1,1,1,1,1,1,1,1,1];
  [10], [5,5], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1];
  [11], [1,1,1,1,1,1,1,1,1,1,1];
  [12], [6,6], [4,4,4], [3,3,3,3], [2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1];
  [13], [1,1,1,1,1,1,1,1,1,1,1,1,1];
  [14], [7,7], [2,2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1];
  [15], [5,5,5], [3,3,3,3,3], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
  [16], [8,8], [4,4,4,4], [2,2,2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
  ...
For n = 6 the 11 partitions of 6 are [6], [3, 3], [4, 2], [2, 2, 2], [5, 1], [3, 2], [4, 1, 1], [2, 2, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]. There are only four partitions of 6 that contain equal parts so the 6th row of triangle is [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The number of parts equals sigma(6) = A000203(6) = 12. The row sum is A038040(6) = 6*A000005(6) = 6*4 = 24.
From _Omar E. Pol_, Dec 04 2019: (Start)
The structure of the above triangle is as follows:
   1;
   2 11;
   3    111;
   4 22     1111;
   5             11111;
   6 33 222            111111;
   7                          1111111;
   8 44     2222                      11111111;
   9    333                                    111111111;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    A244051row[n_]:=Flatten[Map[ConstantArray[#,n/#]&,Reverse[Divisors[n]]]];
    Array[A244051row,10] (* Paolo Xausa, Oct 16 2023 *)
  • PARI
    tabf(nn) = {for (n=1, nn, d = Vecrev(divisors(n)); for (i=1, #d, for (j=1, n/d[i], print1(d[i], ", "));); print(););} \\ Michel Marcus, Nov 08 2014

A048995 Numbers that are not the sum of the nontrivial factors (excluding 1 and n) of some natural number.

Original entry on oeis.org

1, 4, 51, 87, 95, 119, 123, 145, 161, 187, 205, 209, 215, 237, 245, 247, 261, 267, 275, 287, 289, 291, 303, 305, 321, 323, 325, 335, 341, 371, 405, 407, 425, 429, 447, 471, 473, 497, 515, 517, 519, 529, 539, 551, 555, 561, 575, 583, 611, 623, 625, 627, 657
Offset: 1

Views

Author

Bill Taylor (W.Taylor(AT)math.canterbury.ac.nz)

Keywords

Crossrefs

Complement of A048050.
Cf. A005114 (the same property with the sum of proper divisors) and A007369 (the same property with the sum of all divisors).

Programs

  • Mathematica
    a048995[n_Integer] := Module[{t = Table[i, {i, n}], a048050, k},
      a048050[m_] := Plus @@ Take[Divisors[m], {2, -2}];
      Do[
       If[a048050[k] == 0 || a048050[k] > n, Null, t[[a048050[k]]] = 0],
       {k, 2, n^2}];
      Drop[DeleteDuplicates[t], {2}]
    ]; a048995[660] (* Michael De Vlieger, Nov 30 2014 *)
  • PARI
    mx=8479; v=vector(mx); for(i=2, mx^2, ch=sigma(i)-i-1; if(ch<=mx, if(ch>0, v[ch]=1))); c=0; for(i=1, mx, if(v[i]==0, c++; write("b048995.txt", c " " i))) /* Donovan Johnson, Feb 11 2013 */

Extensions

Corrected and extended by Jud McCranie

A054013 Chowla function of n read modulo n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 3, 0, 9, 8, 14, 0, 2, 0, 1, 10, 13, 0, 11, 5, 15, 12, 27, 0, 11, 0, 30, 14, 19, 12, 18, 0, 21, 16, 9, 0, 11, 0, 39, 32, 25, 0, 27, 7, 42, 20, 45, 0, 11, 16, 7, 22, 31, 0, 47, 0, 33, 40, 62, 18, 11, 0, 57, 26, 3, 0, 50, 0, 39, 48, 63, 18, 11, 0, 25, 39, 43, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i) - i - 1) mod i, i=2..100)];
  • Mathematica
    Table[Mod[DivisorSigma[1,n]-n-1,n],{n,90}] (* Harvey P. Dale, Dec 01 2011 *)
  • PARI
    A054013(n) = ((sigma(n)-n-1) % n); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod n

A346878 Sum of the divisors, except for the largest, of the n-th positive even number.

Original entry on oeis.org

1, 3, 6, 7, 8, 16, 10, 15, 21, 22, 14, 36, 16, 28, 42, 31, 20, 55, 22, 50, 54, 40, 26, 76, 43, 46, 66, 64, 32, 108, 34, 63, 78, 58, 74, 123, 40, 64, 90, 106, 44, 140, 46, 92, 144, 76, 50, 156, 73, 117, 114, 106, 56, 172, 106, 136, 126, 94, 62, 240, 64, 100, 186, 127
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

Sum of aliquot divisors (or aliquot parts) of the n-th positive even number.
a(n) has a symmetric representation.

Examples

			For n = 5 the 5th even number is 10 and the divisors of 10 are [1, 2, 5, 10] and the sum of the divisors of 10 except for the largest is 1 + 2 + 5 = 8, so a(5) = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*n] - 2*n; Array[a, 100] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    a(n) = sigma(2*n) - 2*n; \\ Michel Marcus, Aug 20 2021
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(2*n)[:-1])
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Aug 20 2021
    

Formula

a(n) = A001065(2*n).
a(n) = 1 + A346880(n).
Sum_{k=1..n} a(k) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Mar 17 2024

A346870 Sum of all divisors, except the smallest and the largest of every number, of the first n positive even numbers.

Original entry on oeis.org

0, 2, 7, 13, 20, 35, 44, 58, 78, 99, 112, 147, 162, 189, 230, 260, 279, 333, 354, 403, 456, 495, 520, 595, 637, 682, 747, 810, 841, 948, 981, 1043, 1120, 1177, 1250, 1372, 1411, 1474, 1563, 1668, 1711, 1850, 1895, 1986, 2129, 2204, 2253, 2408, 2480, 2596, 2709, 2814
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

Partial sums of the even-indexed terms of Chowla's function A048050.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(n-1)+numtheory[sigma](2*n)-1-2*n)
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 19 2021
  • Mathematica
    s[n_] := DivisorSigma[1, 2*n] - 2*n - 1; Accumulate @ Array[s, 50] (* Amiram Eldar, Aug 19 2021 *)
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346880(n): return sum(divisors(2*n)[1:-1])
    def aupton(nn): return list(accumulate(A346880(n) for n in range(1, nn+1)))
    print(aupton(52)) # Michael S. Branicky, Aug 19 2021
    
  • Python
    from math import isqrt
    def A346870(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+2) # Chai Wah Wu, Nov 02 2023

Formula

a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, May 15 2023

A346880 Sum of the divisors, except the smallest and the largest, of the n-th positive even number.

Original entry on oeis.org

0, 2, 5, 6, 7, 15, 9, 14, 20, 21, 13, 35, 15, 27, 41, 30, 19, 54, 21, 49, 53, 39, 25, 75, 42, 45, 65, 63, 31, 107, 33, 62, 77, 57, 73, 122, 39, 63, 89, 105, 43, 139, 45, 91, 143, 75, 49, 155, 72, 116, 113, 105, 55, 171, 105, 135, 125, 93, 61, 239, 63, 99, 185, 126, 121
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

a(n) has a symmetric representation.

Examples

			For n = 5 the 5th even number is 10 and the divisors of 10 are [1, 2, 5, 10] and the sum of the divisors of 10 except the smaller and the largest is 2 + 5 = 7, so a(5) = 7.
		

Crossrefs

Bisection of A048050.
Partial sums give A346870.

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*n] - 2*n - 1; Array[a, 100] (* Amiram Eldar, Aug 19 2021 *)
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(2*n)[1:-1])
    print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Aug 19 2021

Formula

a(n) = A048050(2*n).
Sum_{k=1..n} a(k) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Mar 21 2024

A053813 Numbers which are an integral multiple of the sum of their proper divisors: prime and perfect numbers.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 17, 19, 23, 28, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Note that numbers which are an integral multiple of the sum of their proper divisors excluding 1 (A048050) are the squares of primes (A001248).
Subsequence of A166070. - Jaroslav Krizek, Oct 06 2009

Crossrefs

Programs

  • Maple
    isA053813 := proc(n) add(1/j, j=numtheory:-divisors(n)): numer(%) = denom(%) + 1 end: select(isA053813, [$1..271]); # Peter Luschny, Oct 03 2018
  • Mathematica
    Select[Range[300], PrimeQ[#] || DivisorSigma[1, #] == 2*#&] (* Jean-François Alcover, Jun 03 2019 *)
Previous Showing 21-30 of 95 results. Next