cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A124794 Coefficients of incomplete Bell polynomials in the prime factorization order.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 6, 1, 5, 10, 1, 1, 15, 1, 10, 15, 6, 1, 10, 10, 7, 15, 15, 1, 60, 1, 1, 21, 8, 35, 45, 1, 9, 28, 20, 1, 105, 1, 21, 105, 10, 1, 15, 35, 70, 36, 28, 1, 105, 56, 35, 45, 11, 1, 210, 1, 12, 210, 1, 84, 168, 1, 36, 55, 280, 1, 105, 1, 13, 280, 45, 126, 252, 1
Offset: 1

Views

Author

Max Alekseyev, Nov 07 2006

Keywords

Comments

Coefficients of (D^k f)(g(t))*(D g(t))^k1*(D^2 g(t))^k2*... in the Faa di Bruno formula for D^m(f(g(t))) where k = k1 + k2 + ..., m = 1*k1 + 2*k2 + ....
Number of set partitions whose block sizes are the prime indices of n (i.e., the integer partition with Heinz number n). - Gus Wiseman, Sep 12 2018

Examples

			The a(6) = 3 set partitions of type (2,1) are {{1},{2,3}}, {{1,3},{2}}, {{1,2},{3}}. - _Gus Wiseman_, Sep 12 2018
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> (l-> add(i*l[i], i=1..nops(l))!/mul(l[i]!*i!^l[i],
             i=1..nops(l)))([seq(padic[ordp](n, ithprime(i)),
             i=1..pi(max(1, factorset(n))))]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 14 2020
  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[numSetPtnsOfType[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}] (* Gus Wiseman, Sep 12 2018 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, primepi(f[k,1])*f[k,2])!/(prod(k=1, #f~, f[k,2]!)*prod(k=1, #f~, primepi(f[k,1])!^f[k,2])); \\ Michel Marcus, Oct 11 2023

Formula

For n = p1^k1*p2^k2*... where 2 = p1 < p2 < ... are the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1!^k1*2!^k2*...)).
a(2*prime(n)) = n + 1, for n > 1. See A065475. - Bill McEachen, Oct 11 2023

A001048 a(n) = n! + (n-1)!.

Original entry on oeis.org

2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004
From Jaume Oliver Lafont, Dec 01 2009: (Start)
(1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k).
Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End)
With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - Manfred Boergens, May 20 2024
For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013
In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016
e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019
a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A059171.
Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009
From a(2)=3 onward the second topmost row of arrays A276588 and A276955.
Cf. sequences with formula (n + k)*n! listed in A282466, A334397.

Programs

Formula

a(n) = (n+1)*(n-1)!.
E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004
The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004
a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009
a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009
G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017
a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019
a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021

Extensions

More terms from James Sellers, Sep 19 2000

A045344 Primes congruent to {1, 2} mod 3.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
Offset: 1

Views

Author

Keywords

Comments

Same as A045319, except for the 2nd term. - R. J. Mathar, Jan 30 2009
Primes of the form 3*n-+1. - Juri-Stepan Gerasimov, Jan 22 2010
Primes excluding 3. - Juri-Stepan Gerasimov, Apr 20 2010
Primes p such that p^2 + 2 is composite. 3 is the only prime p such that p^2 + 2 (= 11) is prime. All numbers p^2 + 2 for primes p = 2 and p > 3 are divisible by 3. - Jaroslav Krizek, Nov 25 2013
Primes p satisfying the equation gcd(sigma(p-1), p) = 1. - Lechoslaw Ratajczak, Aug 18 2018

Crossrefs

Programs

Formula

a(n) = A000040(A065475(n)). - Reinhard Zumkeller, Dec 17 2009

A059171 Size of largest conjugacy class in S_n, the symmetric group on n symbols.

Original entry on oeis.org

1, 1, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Des MacHale, Feb 14 2001

Keywords

Comments

Apart from initial terms, same as A001048. The number a(n) is the maximum of row n in the triangle of refined rencontres numbers A181897. - Tilman Piesk, Apr 02 2012

Examples

			a(3) = 3 because the largest conjugacy class in S_3 consists of the three 2-cycles {(12),(13),(23)}.
G.f. = x + x^2 + 3*x^3 + 8*x^4 + 30*x^5 + 144*x^6 + 840*x^7 + 5760*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [1, 1] cat [n*Factorial(n-2): n in [3..25]]; // Vincenzo Librandi, Oct 26 2011
    
  • Maple
    a := proc(n) if n<=2 then RETURN(1) else RETURN(n*(n-2)!) fi: end:for n from 1 to 40 do printf(`%d,`,a(n)) od:
  • Mathematica
    Join[{1,1},Table[n (n-2)!,{n,3,30}]] (* Harvey P. Dale, Oct 25 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ x - x^2/2 - x Log[1 - x], {x, 0, n}]]; (* Michael Somos, Aug 26 2015 *)
    a[ n_] := With[ {m = n - 1}, If[ m < 0, 0, m! SeriesCoefficient[ -Log[1 - x] - x + 1/(1 - x), {x, 0, m}]]]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    Vec(1+x*serlaplace((1+x-x^2)/(1-x)^2+O(x^66))) \\ Joerg Arndt, Mar 28 2013
    
  • PARI
    a(n)=if(n<=1,1,n!/(n-1)); \\ Joerg Arndt, Mar 28 2013

Formula

a(1) = a(2) = 1; a(n) = n*(n-2)! = (n!)/(n-1) for n > 2. This is the number of (n-1)-cycles in S_n.
E.g.f.: -log(1-x) - x + 1/(1-x). [for a(n+1) - Michael Somos, Aug 26 2015]
E.g.f.: x - x^2/2 - x*log(1-x). - Michael Somos, Aug 26 2015
The sequence 1, 3, 8, ... has e.g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n+2-0^n) = n!*A065475(n). - Paul Barry, May 14 2004
E.g.f.: E(0) - x, where E(k) = 1 + x/(k+1)/(1 - 1/(1 + 1/(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Mar 27 2013
G.f.: 1 + x/Q(0), where Q(k)= 1 - x/(1+x) - x/(1+x)*(k+2)/(1 - x/(1+x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
From Amiram Eldar, Jan 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 5/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2/e - 1/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Fabian Rothelius and James A. Sellers, Feb 15 2001

A168641 Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,n) = 3*(x + 1)^n - 2*(x^n + 1) - n*(x + x^(n - 1)) for n >= 2, p(x,0) = 1, and p(x,1) = x + 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 18, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 60, 45, 12, 1, 1, 14, 63, 105, 105, 63, 14, 1, 1, 16, 84, 168, 210, 168, 84, 16, 1, 1, 18, 108, 252, 378, 378, 252, 108, 18, 1, 1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  6,   6,   1;
  1,  8,  18,   8,   1;
  1, 10,  30,  30,  10,   1;
  1, 12,  45,  60,  45,  12,   1;
  1, 14,  63, 105, 105,  63,  14,   1;
  1, 16,  84, 168, 210, 168,  84,  16,  1;
  1, 18, 108, 252, 378, 378, 252, 108,  18,  1;
  1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1;
  ...
		

Crossrefs

Columns (essentially): A005843 (k=1), A045943 (k=2), A027480 (k=3), A050534 (k=4), A253942 (k=5), A253943 (k=6), A253944 (k=7).

Programs

  • Magma
    function f(n,k)
       if n le 2 then return 1;
       elif k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return 2;
       else return 3;
       end if;
    end function;
    A168641:= func< n,k | Binomial(n,k)*f(n,k) >;
    [A168641(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 24 2025
    
  • Mathematica
    p[x_, n_]:= If[n==0, 1, If[n==1, 1+x, 3*(1+x)^n -(1+x^n) -(1+n*x +n*x^(n-1) + x^n)]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
    (* Second program *)
    f[n_, k_]:= With[{b=Boole}, If[k<=n/2, b[k==0] +2*b[k==1] +3*b[2<=k<=n/2], f[n, n-k]]];
    A168641[n_, k_]:= Binomial[n,k]*If[n<3,1,f[n,k]];
    Table[A168641[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2025 *)
  • Maxima
    T(n,k) := ratcoef(if n <= 2 then (1 + x)^n else 3*(x + 1)^n - (x^n + 1) - (x^n + n*x^(n - 1) + n*x + 1), x, k);
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if (k<=n/2): return int(k==0) + 2*int(k==1) + 3*int(1A168641(n,k):
        if (n<3): return binomial(n,k)
        else: return binomial(n,k)*f(n,k)
    print(flatten([[A168641(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 24 2025

Formula

From G. C. Greubel, Mar 24 2025: (Start)
T(n, k) = 3*binomial(n, k), for n >= 4 and 2 <= k <= n-2, otherwise T(n, 0) = T(n, n) = 1, T(n, 1) = T(n, n-1) = 2*A065475(n-1).
T(n, n-k) = T(n, k).
T(n, 1) = A005843(n) - [n=1] - 2*[n=2].
Columns: T(n, k) = 3*binomial(n,k) - 2*[n=k] - (k+1)*[n=k+1], k >= 2.
Sum_{k=0..n} T(n, k) = 2*A095151(n-1) - 2*[n=0] - 2*[n=1].
Sum_{k=0..n} (-1)^k*T(n, k) = (1+(-1)^n)*(n-2) + 5*[n=0]. (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019

A237273 Triangle read by rows: T(n,k) = k+m, if k < m and k*m = n, or T(n,k) = k, if k^2 = n. Otherwise T(n,k) = 0. With n>=1 and 1<=k<=A000196(n).

Original entry on oeis.org

1, 3, 4, 5, 2, 6, 0, 7, 5, 8, 0, 9, 6, 10, 0, 3, 11, 7, 0, 12, 0, 0, 13, 8, 7, 14, 0, 0, 15, 9, 0, 16, 0, 8, 17, 10, 0, 4, 18, 0, 0, 0, 19, 11, 9, 0, 20, 0, 0, 0, 21, 12, 0, 9, 22, 0, 10, 0, 23, 13, 0, 0, 24, 0, 0, 0, 25, 14, 11, 10, 26, 0, 0, 0, 5
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2014

Keywords

Comments

The first element of column k is in row k^2.
Column k lists k, k-1 zeros, and the positive integers but starting from 2*k+1 interleaved with k-1 zeros.
Row n has only one positive term iff n is a noncomposite number (A008578).
It appears that there are only eight rows that do not contain zeros. The indices of these rows are in A018253 (the divisors of 24).

Examples

			Triangle begins:
1;
3;
4;
5,   2;
6,   0;
7,   5;
8,   0;
9,   6;
10,  0,  3;
11,  7,  0;
12,  0,  0;
13,  8,  7;
14,  0,  0;
15,  9,  0;
16,  0,  8;
17, 10,  0,  4;
18,  0,  0,  0;
19, 11,  9,  0;
20,  0,  0,  0;
21, 12,  0,  9;
22,  0, 10,  0;
23, 13,  0,  0;
24,  0,  0,  0;
25, 14, 11, 10;
26,  0,  0,  0,   5;
27, 15,  0,  0,   0;
28,  0, 12,  0,   0;
29, 16,  0, 11,   0;
30,  0,  0,  0,   0;
31, 17, 13,  0,  11;
...
For n = 9 the divisors of n are 1, 3, 9, so row 9 is 10, 0, 3, because 1*9 = 9 and 3^2 = 9. The sum of row 9 is A000203(9) = 13.
For n = 12 the divisors of 12 are 1, 2, 3, 4, 6, 12, so row 12 is 13, 8, 7, because 1*12 = 12, 2*6 = 12 and 3*4 = 12. The sum of row 12 is A000203(12) = 28.
		

Crossrefs

Row sums give A000203.
Row n has length A000196(n).
Column 1 is A065475.

Programs

  • PARI
    T(n, k) = if (n % k, 0, if (k^2==n, k, k + n/k));
    tabf(nn) = {for (n = 1, nn, v = vector(sqrtint(n), k, T(n, k)); print(v););} \\ Michel Marcus, Jun 19 2019

A181440 a(1) = 2; for n > 1, a(n) = A000217(n)-(sum of previous terms).

Original entry on oeis.org

2, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 20 2010

Keywords

Comments

2 followed by A065475, or A000027 with first and second term interchanged.
It can be observed that this sequence is an "autosequence", that is a sequence which is identical to its inverse binomial transform, except for signs. More precisely, it is an autosequence "of the second kind", since the main diagonal of the successive differences array is twice the first upper diagonal. - Jean-François Alcover, Jul 25 2016

Crossrefs

Cf. A000027 (natural numbers), A000217 (triangular numbers), A065475 (natural numbers excluding 2).

Programs

  • Magma
    S:=[2]; s:=2; for n in [2..80] do a:=Binomial(n+1, 2)-s; Append(~S, a); s+:=a; end for; S;
  • Mathematica
    a = {2}; Do[AppendTo[a, ((n^2 + n)/2) - Total@ a], {n, 2, 72}]; a (* Michael De Vlieger, Jul 25 2016 *)

Formula

G.f.: x*(2-x)*(1-x+x^2) / (1-x)^2. - Joerg Arndt, Jul 25 2016

Extensions

Edited by Klaus Brockhaus, Oct 26 2010
A171950 and A181440 are two different edited versions of a sequence submitted by Giovanni Teofilatto. - N. J. A. Sloane, Oct 29 2010
Showing 1-10 of 13 results. Next