cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A098301 Member r=16 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 16, 225, 3136, 43681, 608400, 8473921, 118026496, 1643897025, 22896531856, 318907548961, 4441809153600, 61866420601441, 861688079266576, 12001766689130625, 167163045568562176, 2328280871270739841, 32428769152221795600, 451674487259834398561
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

Also m such that (3*m^2 + m)/4 = m*(3*m + 1)/4 is a perfect square. - Ctibor O. Zizka, Oct 15 2010
Consequently A049451(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 20] &[16] (* Michael De Vlieger, Feb 23 2021 *)
  • PARI
    concat(0, Vec(x*(1+x)/((1-x)*(1-14*x+x^2)) + O(x^50))) \\ Colin Barker, Jun 15 2015

Formula

a(n) = (T(n, 7)-1)/6 with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7) = A011943(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n)/2; therefore: a(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n - 2)/12.
a(n) = A001353(n)^2 = S(n-1, 4)^2 with Chebyshev's polynomials of the second kind evaluated at x=4, S(n, 4):=U(n, 2).
a(n) = 14*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), n >= 3.
G.f.: x*(1+x)/((1-x)*(1 - 14*x + x^2)) = x*(1+x)/(1 - 15*x + 15*x^2 - x^3) (from the Stephan link, see A092184).
Conjecture: 4*A007655(n+1) + A046184(n) = A055793(n+2) + a(n+1). - Creighton Dement, Nov 01 2004
a(n) = (A001075(n)^2-1)/3. - Parker Grootenhuis, Nov 28 2017

A144390 a(n) = 3*n^2 - n - 1.

Original entry on oeis.org

1, 9, 23, 43, 69, 101, 139, 183, 233, 289, 351, 419, 493, 573, 659, 751, 849, 953, 1063, 1179, 1301, 1429, 1563, 1703, 1849, 2001, 2159, 2323, 2493, 2669, 2851, 3039, 3233, 3433, 3639, 3851, 4069, 4293, 4523, 4759, 5001, 5249, 5503, 5763, 6029, 6301, 6579
Offset: 1

Views

Author

Paul Curtz, Oct 02 2008

Keywords

Comments

Sequence's original Name was "First bisection of A135370."
The partial sums of this sequence give A081437. - Leo Tavares, Dec 26 2021

Crossrefs

Cf. A081437 (partial sums).

Programs

Formula

a(n+1) = a(n) + 6*n + 2; see A016933.
G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - R. J. Mathar, Oct 24 2008
a(-n) = A144391(n). - Michael Somos, Mar 27 2014
E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
From Leo Tavares, Dec 26 2021: (Start)
a(n) = A003215(n) - 2*A005408(n). See Bounded Hexagons illustration.
a(n) = A016754(n-1) - A002378(n-2). (End)
a(n) = A003154(n) - A049451(n-1). - John Elias, Dec 22 2022

Extensions

Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008

A316466 a(n) = 2*n*(7*n - 3).

Original entry on oeis.org

0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
Offset: 0

Views

Author

Bruno Berselli, Jul 04 2018

Keywords

Comments

This is the case k = 9 of Sum_{i = 2..k} P(i,n) = (k - 1)*n*((k - 2)*n - (k - 6))/4, where P(k,n) = n*((k - 2)*n - (k - 4))/2 (see Crossrefs for similar sequences and "Square array in A139600" in Links section).
14*x + 9 is a square for x = a(n) or x = a(-n).

Crossrefs

Similar sequences (see the first comment): A000096 (k = 3), A045943 (k = 4), A049451 (k = 5), A033429 (k = 6), A167469 (k = 7), A152744 (k = 8), this sequence (k = 9), A152994 (k = 10).

Programs

  • GAP
    List([0..50], n -> 2*n*(7*n-3));
    
  • Julia
    [2*n*(7*n-3) for n in 0:50] |> println
  • Magma
    [2*n*(7*n-3): n in [0..50]];
    
  • Mathematica
    Table[2 n (7 n - 3), {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,8,44},50] (* Harvey P. Dale, Jan 24 2021 *)
  • Maxima
    makelist(2*n*(7*n-3), n, 0, 50);
    
  • PARI
    vector(50, n, n--; 2*n*(7*n-3))
    
  • PARI
    concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
    
  • Python
    [2*n*(7*n-3) for n in range(50)]
    
  • Sage
    [2*n*(7*n-3) for n in (0..50)]
    

Formula

O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).

A144391 a(n) = 3*n^2 + n - 1.

Original entry on oeis.org

3, 13, 29, 51, 79, 113, 153, 199, 251, 309, 373, 443, 519, 601, 689, 783, 883, 989, 1101, 1219, 1343, 1473, 1609, 1751, 1899, 2053, 2213, 2379, 2551, 2729, 2913, 3103, 3299, 3501, 3709, 3923, 4143, 4369, 4601, 4839, 5083, 5333, 5589, 5851, 6119, 6393, 6673
Offset: 1

Views

Author

Paul Curtz, Oct 02 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A135370(2*n).
First differences: a(n+1) - a(n) = A016957(n).
a(n) - A144390(n) = 6*n + 4 = A005843(n).
From R. J. Mathar, Oct 24 2008: (Start)
G.f.: x*(3 + 4*x - x^2)/(1 - x)^3.
a(n) = A049451(n) - 1. (End)
E.g.f.: (3*x^2 + 4*x - 1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
a(n) = 1 + Sum_{i = n-1..2*n-1} 2*i. - Bruno Berselli, Feb 16 2018
a(n) = A003215(n) - (n+1)*2. - Leo Tavares, Jul 04 2021

Extensions

Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Mar 01 2009

A045946 Star of David matchstick numbers: a(n) = 6*n*(3*n+1).

Original entry on oeis.org

0, 24, 84, 180, 312, 480, 684, 924, 1200, 1512, 1860, 2244, 2664, 3120, 3612, 4140, 4704, 5304, 5940, 6612, 7320, 8064, 8844, 9660, 10512, 11400, 12324, 13284, 14280, 15312, 16380, 17484, 18624, 19800, 21012, 22260, 23544, 24864, 26220, 27612, 29040, 30504, 32004
Offset: 0

Views

Author

Keywords

Comments

Vertical spoke of triangular spiral in A051682. - Paul Barry, Mar 15 2003

Crossrefs

Programs

Formula

a(n) = 24*C(n,1) + 36*C(n,2); binomial transform of (0, 24, 36, 0, 0, 0, ...). - Paul Barry, Mar 15 2003
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=24, a(2)=84. - Harvey P. Dale, Nov 23 2012
G.f.: 12*x*(2+x)/(1-x)^3. - Ivan Panchenko, Nov 13 2013
a(n) = 2*A045945(n). - Michel Marcus, Nov 13 2013
a(n) = 12*A005449(n). - R. J. Mathar, Feb 08 2016
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - Pi/(12*sqrt(3)) - log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -1/2 + Pi/(6*sqrt(3)) + log(2)/3. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: 6*exp(x)*x*(4 + 3*x).
a(n) = 6*A049451(n) = 4*A081266(n) = 3*A033580(n). (End)

A100104 a(n) = n^3 - n^2 + 1.

Original entry on oeis.org

1, 1, 5, 19, 49, 101, 181, 295, 449, 649, 901, 1211, 1585, 2029, 2549, 3151, 3841, 4625, 5509, 6499, 7601, 8821, 10165, 11639, 13249, 15001, 16901, 18955, 21169, 23549, 26101, 28831, 31745, 34849, 38149, 41651, 45361, 49285, 53429, 57799, 62401, 67241, 72325
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2005

Keywords

Comments

Appears to be the number of possible distinct sums of a set of n distinct integers between 1 and n^2. Checked up to n=6. - Dylan Hamilton, Sep 21 2010
a(n) = A100104(n+1) - A100104(n). - Reinhard Zumkeller, Jul 07 2012

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A162611. - Vincenzo Librandi, May 27 2010
Cf. A049451 (first differences).

Programs

Formula

From Harvey P. Dale, Sep 11 2011: (Start)
a(0)=1, a(1)=1, a(2)=5, a(3)=19, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (x^3+7*x^2-3*x+1)/(x-1)^4. (End)

A187377 T(n,k)=Number of n-step S, NW and NE-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 14, 4, 0, 25, 30, 25, 4, 0, 36, 52, 64, 40, 0, 0, 49, 80, 121, 132, 40, 0, 0, 64, 114, 196, 278, 188, 24, 0, 0, 81, 154, 289, 478, 487, 264, 18, 0, 0, 100, 200, 400, 732, 924, 832, 324, 0, 0, 0, 121, 252, 529, 1040, 1499, 1810, 1418, 404, 0, 0, 0, 144, 310, 676
Offset: 1

Views

Author

R. H. Hardin Mar 09 2011

Keywords

Comments

Table starts
.1.4..9..16...25....36....49....64.....81....100....121....144....169....196
.0.4.14..30...52....80...114...154....200....252....310....374....444....520
.0.4.25..64..121...196...289...400....529....676....841...1024...1225...1444
.0.4.40.132..278...478...732..1040...1402...1818...2288...2812...3390...4022
.0.0.40.188..487...924..1499..2212...3063...4052...5179...6444...7847...9388
.0.0.24.264..832..1810..3154..4864...6940...9382..12190..15364..18904..22810
.0.0.18.324.1418..3448..6581.10688..15769..21824..28853..36856..45833..55784
.0.0..0.404.2140..6380.13220.22996..35366..50330..67888..88040.110786.136126
.0.0..0.340.3060.10320.24892.46412..75567.111492.154187.203652.259887.322892
.0.0..0.280.3792.17052.44464.92628.159328.245946.350386.472648.612732.770638

Examples

			Some n=4 solutions for 4X4
..0..4..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..3..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....0..0..1..0
..0..2..0..0....0..0..3..1....3..0..0..0....4..2..0..0....0..0..2..4
..0..0..1..0....0..0..4..2....4..0..0..0....0..3..1..0....0..0..3..0
		

Crossrefs

Row 2 is A049451(n-1)
Row 3 is A016790(n-2)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 5*k + 2
Empirical: T(3,k) = 9*k^2 - 24*k + 16 for k>1
Empirical: T(4,k) = 27*k^2 - 97*k + 88 for k>2
Empirical: T(5,k) = 69*k^2 - 322*k + 372 for k>3
Empirical: T(6,k) = 183*k^2 - 1035*k + 1432 for k>4
Empirical: T(7,k) = 487*k^2 - 3198*k + 5104 for k>5
Empirical: T(8,k) = 1297*k^2 - 9679*k + 17420 for k>6
Empirical: T(9,k) = 3385*k^2 - 28390*k + 56892 for k>7
Empirical: T(10,k) = 8911*k^2 - 82691*k + 181756 for k>8

A307011 First coordinate in a redundant hexagonal coordinate system of the points of a counterclockwise spiral on an hexagonal grid. Second and third coordinates are given in A307012 and A345978.

Original entry on oeis.org

0, 1, 0, -1, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5
Offset: 0

Views

Author

Hugo Pfoertner, Mar 19 2019

Keywords

Comments

From Peter Munn, Jul 22 2021: (Start)
The points of the spiral are equally the points of a hexagonal lattice, the points of an isometric (triangular) grid and the center points of the cells of a honeycomb (regular hexagonal tiling or grid). The coordinate system can be described using 3 axes that pass through spiral point 0 and one of points 1, 2 or 3. Along each axis, one of the coordinates is 0.
a(n) is the signed distance from spiral point n to the axis that passes through point 2. The distance is measured along either of the lines through point n that are parallel to one of the other 2 axes and the sign is such that point 1 has positive distance.
This coordinate can be paired with either of the other coordinates to form oblique coordinates as described in A307012. Alternatively, all 3 coordinates can be used together, symmetrically, as described in A345978.
There is a negated variant of the 3rd coordinate, which is the conventional sense of this coordinate for specifying (with the 2nd coordinate) the Eisenstein integers that can be the points of the spiral when it is embedded in the complex plane. See A307013.
(End)

Crossrefs

Numbers on the spokes of the spiral: A000567, A028896, A033428, A045944, A049450, A049451.
Positions on the spiral that correspond to Eisenstein primes: A345435.

Programs

  • PARI
    r=-1;d=-1;print1(m=0,", ");for(k=0,8,for(j=1,r,print1(s,", "));if(k%2,,m++;r++);for(j=-m,m+1,if(d*j>=-m,print1(s=d*j,", ")));d=-d)

Extensions

Name revised by Peter Munn, Jul 08 2021

A242669 a(n) = n*floor(n/3).

Original entry on oeis.org

0, 0, 0, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 108, 114, 120, 147, 154, 161, 192, 200, 208, 243, 252, 261, 300, 310, 320, 363, 374, 385, 432, 444, 456, 507, 520, 533, 588, 602, 616, 675, 690, 705, 768, 784, 800, 867, 884, 901, 972, 990
Offset: 0

Views

Author

Bruno Berselli, Jul 01 2014

Keywords

Comments

For n = 0, 1, 2, 4, 8, 49, 98, 676, 1352, 9409, 18818, 131044, 262088, 1825201, 3650402, ... a(n) is a square.

Crossrefs

Cf. A000290 (n^2), A010762 (floor(n/2)*floor(n/3)), A093353 (n*floor(n/2)), A213033 (n*floor(n/2)*floor(n/3)), A233035 (n*floor(n/4)).
Cf. A002264 (floor(n/3)).

Programs

  • Magma
    [n*Floor(n/3): n in [0..60]];
    
  • Mathematica
    Table[n Floor[n/3], {n, 0, 60}]
  • PARI
    a(n)=n\3*n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [n*floor(n/3) for n in (0..60)];
    

Formula

G.f.: x^3*(3 + x + x^2 + x^3)/((1 - x)^3*(1 + x + x^2)^2).
a(3m) = A033428(m), a(3m+1) = A049451(m), a(3m+2) = A045944(m).
Sum_{n>=3} (-1)^(n+1)/a(n) = 9/4 + Pi^2/36 - Pi/(2*sqrt(3)) - 2*log(2). - Amiram Eldar, Mar 30 2023
Previous Showing 11-20 of 31 results. Next