cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001353 a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0

Views

Author

Keywords

Comments

3*a(n)^2 + 1 is a square. Moreover, 3*a(n)^2 + 1 = (2*a(n) - a(n-1))^2.
Consecutive terms give nonnegative solutions to x^2 - 4*x*y + y^2 = 1. - Max Alekseyev, Dec 12 2012
Values y solving the Pellian x^2 - 3*y^2 = 1; corresponding x values given by A001075(n). Moreover, we have a(n) = 2*a(n-1) + A001075(n-1). - Lekraj Beedassy, Jul 13 2006
Number of spanning trees in 2 X n grid: by examining what happens at the right-hand end we see that a(n) = 3*a(n-1) + 2*a(n-2) + 2*a(n-3) + ... + 2*a(1) + 1, where the final 1 corresponds to the tree ==...=| !. Solving this we get a(n) = 4*a(n-1) - a(n-2).
Complexity of 2 X n grid.
A016064 also describes triangles whose sides are consecutive integers and in which an inscribed circle has an integer radius. A001353 is exactly and precisely mapped to the integer radii of such inscribed circles, i.e., for each term of A016064, the corresponding term of A001353 gives the radius of the inscribed circle. - Harvey P. Dale, Dec 28 2000
n such that 3*n^2 = floor(sqrt(3)*n*ceiling(sqrt(3)*n)). - Benoit Cloitre, May 10 2003
For n>0, ratios a(n+1)/a(n) may be obtained as convergents of the continued fraction expansion of 2+sqrt(3): either as successive convergents of [4;-4] or as odd convergents of [3;1, 2]. - Lekraj Beedassy, Sep 19 2003
Ways of packing a 3 X (2*n-1) rectangle with dominoes, after attaching an extra square to the end of one of the sides of length 3. With reference to A001835, therefore: a(n) = a(n-1) + A001835(n-1) and A001835(n) = 3*A001835(n-1) + 2*a(n-1). - Joshua Zucker and the Castilleja School Math Club, Oct 28 2003
a(n+1) is a Chebyshev transform of 4^n, where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
This sequence is prime-free, because a(2n) = a(n) * (a(n+1)-a(n-1)) and a(2n+1) = a(n+1)^2 - a(n)^2 = (a(n+1)+a(n)) * (a(n+1)-a(n)). - Jianing Song, Jul 06 2019
Numbers such that there is an m with t(n+m) = 3*t(m), where t(n) are the triangular numbers A000217. For instance, t(35) = 3*t(20) = 630, so 35 - 20 = 15 is in the sequence. - Floor van Lamoen, Oct 13 2005
a(n) = number of distinct matrix products in (A + B + C + D)^n where commutator [A,B] = 0 but neither A nor B commutes with C or D. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
For n > 1, middle side (or long leg) of primitive Pythagorean triangles having an angle nearing Pi/3 with larger values of sides. [Complete triple (X, Y, Z), X < Y < Z, is given by X = A120892(n), Y = a(n), Z = A120893(n), with recurrence relations X(i+1) = 2*{X(i) - (-1)^i} + a(i); Z(i+1) = 2*{Z(i) + a(i)} - (-1)^i.] - Lekraj Beedassy, Jul 13 2006
From Dennis P. Walsh, Oct 04 2006: (Start)
Number of 2 X n simple rectangular mazes. A simple rectangular m X n maze is a graph G with vertex set {0, 1, ..., m} X {0, 1, ..., n} that satisfies the following two properties: (i) G consists of two orthogonal trees; (ii) one tree has a path that sequentially connects (0,0),(0,1), ..., (0,n), (1,n), ...,(m-1,n) and the other tree has a path that sequentially connects (1,0), (2,0), ..., (m,0), (m,1), ..., (m,n). For example, a(2) = 4 because there are four 2 X 2 simple rectangular mazes:
| | | | | | | | |
| | | | | || | |
(End)
[1, 4, 15, 56, 209, ...] is the Hankel transform of [1, 1, 5, 26, 139, 758, ...](see A005573). - Philippe Deléham, Apr 14 2007
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001353 and A001835 = bisection of continued fraction [1, 2, 1, 2, 1, 2, ...], i.e., of [1, 3, 4, 11, 15, 41, ...].
For n>0, a(n) equals the determinant of an (n-1) X (n-1) tridiagonal matrix with ones in the super and subdiagonals and (4, 4, 4, ...) as the main diagonal. [Corrected by Johannes Boot, Sep 04 2011]
A001835 and A001353 = right and next to right borders of triangle A125077. (End)
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 4's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
2a(n) is the number of n-color compositions of 2n consisting of only even parts; see Guo in references. - Brian Hopkins, Jul 19 2011
Pisano period lengths: 1, 2, 6, 4, 3, 6, 8, 4, 18, 6, 10, 12, 12, 8, 6, 8, 18, 18, 5, 12, ... - R. J. Mathar, Aug 10 2012
From Michel Lagneau, Jul 08 2014: (Start)
a(n) is defined also by the recurrence a(1)=1; for n>1, a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 1) where a(n) is an integer for every n. This sequence is generalizable by the sequence b(n,m) of parameter m with the initial condition b(1,m) = 1, and for n > 1 b(n+1,m) = m*b(n,m) + sqrt((m^2 - 1)*b(n,m)^2 + 1) for m = 2, 3, 4, ... where b(n,m) is an integer for every n.
The first corresponding sequences are
b(n,2) = a(n) = A001353(n);
b(n,3) = A001109(n);
b(n,4) = A001090(n);
b(n,5) = A004189(n);
b(n,6) = A004191(n);
b(n,7) = A007655(n);
b(n,8) = A077412(n);
b(n,9) = A049660(n);
b(n,10) = A075843(n);
b(n,11) = A077421(n);
....................
We obtain a general sequence of polynomials {b(n,x)} = {1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1, 32*x^5 - 32*x^3 + 6*x, ...} with x = m where each b(n,x) is a Gegenbauer polynomial defined by the recurrence b(n,x)- 2*x*b(n-1,x) + b(n-2,x) = 0, the same relation as the Chebyshev recurrence, but with the initial conditions b(x,0) = 1 and b(x,1) = 2*x instead b(x,0) = 1 and b(x,1) = x for the Chebyshev polynomials. (End)
If a(n) denotes the n-th term of the above sequence and we construct a triangle whose sides are a(n) - 1, a(n) + 1 and sqrt(3a(n)^2 + 1), then, for every n the measure of one of the angles of the triangle so constructed will always be 120 degrees. This result of ours was published in Mathematics Spectrum (2012/2013), Vol. 45, No. 3, pp. 126-128. - K. S. Bhanu and Dr. M. N. Deshpande, Professor (Retd), Department of Statistics, Institute of Science, Nagpur (India).
For n >= 1, a(n) equals the number of 01-avoiding words of length n - 1 on alphabet {0, 1, 2, 3}. - Milan Janjic, Jan 25 2015
For n > 0, 10*a(n) is the number of vertices and roots on level n of the {4, 5} mosaic (see L. Németh Table 1 p. 6). - Michel Marcus, Oct 30 2015
(2 + sqrt(3))^n = A001075(n) + a(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 12 2019
The Cholesky decomposition A = C C* for tridiagonal A with A[i,i] = 4 and A[i+1,i] = A[i,i+1] = -1, as it arises in the discretized 2D Laplace operator (Poisson equation...), has nonzero elements C[i,i] = sqrt(a(i+1)/a(i)) = -1/C[i+1,i], i = 1, 2, 3, ... - M. F. Hasler, Mar 12 2021
The triples (a(n-1), 2a(n), a(n+1)), n=2,3,..., are exactly the triples (a,b,c) of positive integers a < b < c in arithmetic progression such that a*b+1, b*c+1, and c*a+1 are perfect squares. - Bernd Mulansky, Jul 10 2021
From Greg Dresden and Linyun Sheng, Jul 01 2025: (Start)
a(n) is the number of ways to tile this strip of length n,
| | | | | | |\
||__||__||__|_\,
where the last cell is a right triangle, with three types of tiles: 1 X 1 squares, 1 X 1 small right triangles, and large right triangles (with large side length 2) formed by joining two of those small right triangles along a short leg. As an example, here is one of the a(7)=2911 ways to tile the 1 X 7 strip with these kinds of tiles:
|\ /|\ | /| | / \
|\/_|\|/|__|/_\,
(End)

Examples

			For example, when n = 3:
  ****
  .***
  .***
can be packed with dominoes in 4 different ways: 3 in which the top row is tiled with two horizontal dominoes and 1 in which the top row has two vertical and one horizontal domino, as shown below, so a(2) = 4.
  ---- ---- ---- ||--
  .||| .--| .|-- .|||
  .||| .--| .|-- .|||
G.f. = x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2911*x^7 + 10864*x^8 + ...
		

References

  • Bastida, Julio R., Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 163.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A002530.
Cf. A125077.
A row of A116469.
Chebyshev sequence U(n, m): A000027 (m=1), this sequence (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 16 2018
    
  • Haskell
    a001353 n = a001353_list !! n
    a001353_list =
       0 : 1 : zipWith (-) (map (4 *) $ tail a001353_list) a001353_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
    
  • Maple
    A001353 := proc(n) option remember; if n <= 1 then n else 4*A001353(n-1)-A001353(n-2); fi; end;
    A001353:=z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation.
    seq( simplify(ChebyshevU(n-1, 2)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 13 2005 *)
    Table[GegenbauerC[n-1, 1, 2], {n, 0, 30}] (* Zerinvary Lajos, Jul 14 2009 *)
    Table[-((I Sin[n ArcCos[2]])/Sqrt[3]), {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[Sinh[n ArcCosh[2]]/Sqrt[3], {n, 0, 30}] // FunctionExpand (* Eric W. Weisstein, Jul 16 2011 *)
    Table[ChebyshevU[n-1, 2], {n, 0, 30}] (* Eric W. Weisstein, Jul 16 2011 *)
    a[0]:=0; a[1]:=1; a[n_]:= a[n]= 4a[n-1] - a[n-2]; Table[a[n], {n, 0, 30}] (* Alonso del Arte, Jul 19 2011 *)
    LinearRecurrence[{4, -1}, {0, 1}, 30] (* Sture Sjöstedt, Dec 06 2011 *)
    Round@Table[Fibonacci[2n, Sqrt[2]]/Sqrt[2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=0,30,print1(([1,0,0]*M^i)[2],",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
    
  • PARI
    {a(n) = real( (2 + quadgen(12))^n / quadgen(12) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    concat(0, Vec(x/(1-4*x+x^2) + O(x^30))) \\ Altug Alkan, Oct 30 2015
    
  • Python
    a001353 = [0, 1]
    for n in range(30): a001353.append(4*a001353[-1] - a001353[-2])
    print(a001353)  # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number1(n,4,1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [chebyshev_U(n-1,2) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x/(1-4*x+x^2).
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = sqrt((A001075(n)^2 - 1)/3).
a(n) = 2*a(n-1) + sqrt(3*a(n-1)^2 + 1). - Lekraj Beedassy, Feb 18 2002
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
Binomial transform of A002605.
E.g.f.: exp(2*x)*sinh(sqrt(3)*x)/sqrt(3).
a(n) = S(n-1, 4) = U(n-1, 2); S(-1, x) := 0, Chebyshev's polynomials of the second kind A049310.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*4^(n - 2*k). - Paul Barry, Oct 25 2004
a(n) = Sum_{k=0..n-1} binomial(n+k,2*k+1)*2^k. - Paul Barry, Nov 30 2004
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3), n>=3. - Lekraj Beedassy, Jul 13 2006
a(n) = -A106707(n). - R. J. Mathar, Jul 07 2006
M^n * [1,0] = [A001075(n), A001353(n)], where M = the 2 X 2 matrix [2,3; 1,2]; e.g., a(4) = 56 since M^4 * [1,0] = [97, 56] = [A001075(4), A001353(4)]. - Gary W. Adamson, Dec 27 2006
From Michael Somos, Sep 19 2008: (Start)
Sequence satisfies 1 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v.
a(n) = -a(-n) for all integer n. (End)
Rational recurrence: a(n) = (17*a(n-1)*a(n-2) - 4*(a(n-1)^2 + a(n-2)^2))/a(n-3) for n > 3. - Jaume Oliver Lafont, Dec 05 2009
If p[i] = Fibonacci(2i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j + 1), and A[i,j] = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
From Eric W. Weisstein, Jul 16 2011: (Start)
a(n) = C_{n-1}^{(1)}(2), where C_n^{(m)}(x) is the Gegenbauer polynomial.
a(n) = -i*sin(n*arccos(2))/sqrt(3).
a(n) = sinh(n*arccosh(2))/sqrt(3). (End)
a(n) = b such that Integral_{x=0..Pi/2} (sin(n*x))/(2-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
a(n) = sqrt(A098301(n)) = sqrt([A055793 / 3]), base 3 analog of A031150. - M. F. Hasler, Jan 16 2012
a(n+1) = Sum_{k=0..n} A101950(n,k)*3^k. - Philippe Deléham, Feb 10 2012
1, 4, 15, 56, 209, ... = INVERT(INVERT(1, 2, 3, 4, 5, ...)). - David Callan, Oct 13 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(3).
Product_{n >= 2} (1 - 1/a(n)) = 1/4*(1 + sqrt(3)). (End)
a(n+1) = (A001834(n) + A001835(n))/2. a(n+1) + a(n) = A001834(n). a(n+1) - a(n) = A001835(n). - Richard R. Forberg, Sep 04 2013
a(n) = -(-i)^(n+1)*Fibonacci(n, 4*i), i = sqrt(-1). - G. C. Greubel, Jun 06 2019
a(n)^2 - a(m)^2 = a(n+m) * a(n-m), a(n+2)*a(n-2) = 16*a(n+1)*a(n-1) - 15*a(n)^2, a(n+3)*a(n-2) = 15*a(n+2)*a(n-1) - 14*a(n+1)*a(n) for all integer n, m. - Michael Somos, Dec 12 2019
a(n) = 2^n*Sum_{k >= n} binomial(2*k,2*n-1)*(1/3)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = Sum_{k > 0} (-1)^((k-1)/2)*binomial(2*n, n+k)*(k|12), where (k|12) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
Sum_{k=0..n} a(k) = (a(n+1) - a(n) - 1)/2. - Prabha Sivaramannair, Sep 22 2023
a(2n+1) = A001835(n+1) * A001834(n). - M. Farrokhi D. G., Oct 15 2023
Sum_{n>=1} arctan(1/(4*a(n)^2)) = Pi/12 (A019679) (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
From Peter Bala, May 21 2025: (Start)
Product_{n >= 1} (1 + 1/a(n))^2 = 2*(2 + sqrt(3)) (telescoping product: (1 + 1/a(2*n-1))^2 * (1 + 1/a(2*n-2))^2 = (4 + 2*A251963(n)/A005246(2*n)^2)/(4 + 2*A251963(n-1)/A005246(2*n-2)^2) ).
Product_{n >= 2} (1 - 1/a(n))^2 = (1/8)*(2 + sqrt(3)).
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 3 (telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (3 - 2/A001835(n+1)^2)/(3 - 2/A001835(n)^2) ).
Product_{n >= 2} ((a(2*n-1) + 1)/(a(2*n-1) - 1))^2 = 4/3.
The o.g.f. A(x) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0. The o.g.f. for A007655 equals -A(sqrt(x))*A(-sqrt(x)). (End)

A001570 Numbers k such that k^2 is centered hexagonal.

Original entry on oeis.org

1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1

Views

Author

Keywords

Comments

Chebyshev T-sequence with Diophantine property. - Wolfdieter Lang, Nov 29 2002
a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - Reinhard Zumkeller, Jun 01 2005
Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - Lekraj Beedassy, Jul 21 2006
Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - Alexander Adamchuk, Apr 06 2007
Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - Ctibor O. Zizka, Sep 04 2008
a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - Giacomo Fecondo, Oct 09 2010
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - Max Alekseyev, Mar 15 2015
Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - Jeffrey Shallit, Dec 11 2017
Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - Bernard Schott, Nov 20 2022

Examples

			G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
		

References

  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003500/4. Cf. A006051, A001921, A001922.
One half of odd part of bisection of A001075. First differences of A007655.
Cf. A077417 with companion A077416.
Row 14 of array A094954.
A122571 is another version of the same sequence.
Row 2 of array A188646.
Cf. similar sequences listed in A238379.
Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

Programs

  • Magma
    [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
    f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
      ] (* Complement of A041017 *)
    a[12, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
    CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
    

Formula

a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - Michael Somos, Feb 15 2011
G.f.: x * (1 - x) / (1 -14*x + x^2). - Michael Somos, Feb 15 2011
Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - Benoit Cloitre, Dec 10 2002
a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - Wolfdieter Lang, Nov 29 2002
a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - Max Alekseyev, Jan 23 2022
4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.
a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).
a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - Alexander Adamchuk, Apr 06 2007
a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - Zak Seidov, May 06 2007
a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008
a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).
a(n) = A098301(n+1) - A001353(n)*A001835(n).
a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - Ivan N. Ianakiev, Sep 24 2013
a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - Bernard Schott, Nov 20 2022
a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). Michael Somos, Dec 18 2022
a(n) = A003154(A101265(n)). - Andrea Pinos, Dec 19 2022

A007655 Standard deviation of A007654.

Original entry on oeis.org

0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
Offset: 1

Views

Author

Keywords

Comments

a(n) corresponds also to one-sixth the area of Fleenor-Heronian triangle with middle side A003500(n). - Lekraj Beedassy, Jul 15 2002
a(n) give all (nontrivial, integer) solutions of Pell equation b(n+1)^2 - 48*a(n+1)^2 = +1 with b(n+1)=A011943(n), n>=0.
For n>=3, a(n) equals the permanent of the (n-2) X (n-2) tridiagonal matrix with 14's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,13}. - Milan Janjic, Jan 25 2015
6*a(n)^2 = 6*S(n-1, 14)^2 is the triangular number Tri((T(n, 7) - 1)/2) with Tri = A000217 and T = A053120. This is instance k = 3 of the general k-identity given in a comment to A001109. - Wolfdieter Lang, Feb 01 2016

Examples

			G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
		

References

  • D. A. Benaron, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), this sequence (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=7;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
    
  • Maple
    0,seq(orthopoly[U](n,7),n=0..30); # Robert Israel, Feb 04 2016
  • Mathematica
    Table[GegenbauerC[n, 1, 7], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{14,-1}, {0,1}, 20] (* Vincenzo Librandi, Feb 02 2016 *)
    ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
    Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
  • PARI
    concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
    
  • PARI
    vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 14*a(n-1) - a(n-2).
G.f.: x^2/(1-14*x+x^2).
a(n+1) ~ 1/24*sqrt(3)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n+1) = S(n-1, 14), n>=0, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n+1) = ( (7+4*sqrt(3))^n - (7-4*sqrt(3))^n )/(8*sqrt(3)).
a(n+1) = sqrt((A011943(n)^2 - 1)/48), n>=0.
Chebyshev's polynomials U(n-2, x) evaluated at x=7.
a(n) = A001353(2n)/4. - Lekraj Beedassy, Jul 15 2002
4*a(n+1) + A046184(n) = A055793(n+2) + A098301(n+1) 4*a(n+1) + A098301(n+1) + A055793(n+2) = A046184(n+1) (4*a(n+1))^2 = A098301(2n+1) (conjectures). - Creighton Dement, Nov 02 2004
(4*a(n))^2 = A103974(n)^2 - A011922(n-1)^2. - Paul D. Hanna, Mar 06 2005
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 13*( a(n-1) + a(n-2) ) - a(n-3).
a(n) = 15*( a(n-1) - a(n-2) ) + a(n-3). (End)
a(n) = b such that (-1)^n/4*Integral_{x=-Pi/2..Pi/2} (sin((2*n-2)*x))/(2-sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n+2) = Sum_{k=0..n} A101950(n,k)*13^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/3*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/7*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
a(n) = (A028230(n) - A001570(n))/2. - Richard R. Forberg, Nov 14 2013
E.g.f.: 1 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/12. - Stefano Spezia, Dec 11 2022

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A055793 Numbers k such that k and floor[k/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801, 1355023461779503195684, 18873042157456379352769
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Or, squares of the form 3k^2+1.
See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Examples

			a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
		

Crossrefs

Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
  • Maple
    A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{15,-15,1},{0,1,4,49},40] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    sq3nsqplus1(n) = { for(x=1,n, y = 3*x*x+1; \ print1(y" ") if(issquare(y),print1(y" ")) ) }
    

Formula

a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012

Extensions

More terms from Cino Hilliard, Mar 01 2003

A103974 Smaller sides (a) in (a,a,a+1)-integer triangle with integer area.

Original entry on oeis.org

1, 5, 65, 901, 12545, 174725, 2433601, 33895685, 472105985, 6575588101, 91586127425, 1275630195845, 17767236614401, 247465682405765, 3446752317066305, 48007066756522501, 668652182274248705
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are: 0, 12, 1848, 351780, 68149872, 13219419708, 2564481115560 (see A104009).
What is the next term? Is the sequence finite? The possible last two digits of "a" are (it may help in searching for more terms): {01, 05, 09, 15, 19, 25, 29, 33, 35, 39, 45, 49, 51, 55, 59, 65, 69, 75, 79, 83, 85, 89, 95, 99}.
Equivalently, positive integers a such that 3/16*a^4 + 1/4*a^3 - 1/8*a^2 - 1/4*a - 1/16 is a square (A000290), a direct result of Heron's formula. Conjecture: lim_{n->oo} a(n+1)/a(n) = 7 + 4*sqrt(3) (= 7 + A010502). - Rick L. Shepherd, Sep 04 2005
Values x^2 + y^2, where the pair (x, y) solves for x^2 - 3y^2=1, i.e., a(n)= (A001075(n))^2 + (A001353(n))^2 = A055793(n) + A098301(n). - Lekraj Beedassy, Jul 13 2006
Floretion Algebra Multiplication Program, FAMP Code: 1lestes[ 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e ]

Crossrefs

Cf. A011922, A007655, A001353, A102341, A103975, A016064, A011945, A010502 (4*sqrt(3)), A000290 (square numbers), A350916.

Programs

  • Maple
    A:=rsolve({-A(n+3)+15*A(n+2)-15*A(n+1)+A(n), A(0) = 1, A(1) = 5, A(2)=65}, A(n), makeproc); # Mihailovs
  • Mathematica
    f[n_] := Simplify[((2 + Sqrt[3])^(2n) + (2 - Sqrt[3])^(2n) + 1)/3]; Table[ f[n], {n, 0, 16}] (* Or *)
    a[1] = 1; a[2] = 5; a[3] = 65; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n], {n, 17}] (* Or *)
    CoefficientList[ Series[(1 - 10x + 5x^2)/(1 - 15x + 15x^2 - x^3), {x, 0, 16}], x] (* Or *)
    Range[0, 16]! CoefficientList[ Simplify[ Series[(E^x + E^((7 + 4Sqrt[3])x) + E^((7 - 4Sqrt[3])x))/3, {x, 0, 16}]], x] (* Robert G. Wilson v, Mar 24 2005 *)
  • PARI
    for(a=1,10^6, b=a; c=a+1; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) /* Uses Heron's formula */ \\ Rick L. Shepherd, Sep 04 2005

Formula

Composite of comments from Alec Mihailovs (alec(AT)mihailovs.com) and David Terr, Mar 07 2005: (Start)
"a(n)^2 = A011922(n)^2 + (4*A007655(n))^2, so that A011922(n) = 1/2 base of triangles, A007655(n) = 1/4 height of triangles (conjectured by Paul Hanna).
Area is (a+1)/4*sqrt((3*a+1)*(a-1)). If a is even, the numerator is odd and the area is not an integer. That means a=2*k-1. In this case, Area=k*sqrt((3*k-1)*(k-1)).
Solving equation (3*k-1)*(k-1)=y^2, we get k=(2+sqrt(1+3*y^2))/3. That means that 1+3*y^2=x^2 with integer x and y. This is a Pell equation, all solutions of which have the form x=((2+sqrt(3))^n+(2-sqrt(3))^n)/2, y=((2+sqrt(3))^n-(2-sqrt(3))^n)/(2*sqrt(3)). Therefore k=(x+2)/3 is an integer only for even n. Then a=2*k-1=(2*x+1)/3 with even n. Q.E.D.
a(n)=(1/3)*((2+sqrt(3))^(2*n-2)+(2-sqrt(3))^(2*n-2)+1).
Recurrence: a(n+3)=15*a(n+2)-15*a(n+1)+a(n), a(0)=1, a(1)=5, a(2)=65.
G.f.: x*(1-10*x+5*x^2)/(1-15*x+15*x^2-x^3).
E.g.f.: 1/3*(exp(x)+exp((7+4*sqrt(3))*x)+exp((7-4*sqrt(3))*x)).
a(n) = 4U(n)^2 + 1, where U(1) = 0, U(2)=1 and U(n+1) = 4U(n) - U(n-1) for n>1. (U(n), V(n)) is the n-th solution to Pell's equation 3U(n)^2 + 1 = V(n)^2. (U(n) is the sequence A001353.)" (End)
a(n+1) = A098301(n+1) + A055793(n+2) - Creighton Dement, Apr 18 2005
a(n) = floor((7+4*sqrt(3))*a(n-1))-4, n>=3. - Rick L. Shepherd, Sep 04 2005
a(n)= [1+14*A007655(n+2)-194*A007655(n+1)]/3. - R. J. Mathar, Nov 16 2007
For n>=3, a(n) = 14*a(n-1) - a(n-2) - 4. It is one of 10 second-order linear recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. - Max Alekseyev, Jan 22 2022

Extensions

More terms from Creighton Dement, Apr 18 2005
Edited by Max Alekseyev, Jan 22 2022

A007654 Numbers k such that the standard deviation of 1,...,k is an integer.

Original entry on oeis.org

0, 3, 48, 675, 9408, 131043, 1825200, 25421763, 354079488, 4931691075, 68689595568, 956722646883, 13325427460800, 185599261804323, 2585064237799728, 36005300067391875, 501489136705686528, 6984842613812219523, 97286307456665386800, 1355023461779503195683
Offset: 1

Views

Author

Keywords

Comments

Gives solutions k to the Diophantine equation m^2 = k*(k+1)/3. - Anton Lorenz Vrba (anton(AT)a-l-v.net), Jun 28 2005
If x=a(n), y=a(n+1), z=a(n+2) are three consecutive terms, then x^2 - 16*y*x + 14*x*z + 16*y^2 - 16*z*y + z^2 = 144. The formula is symmetric in x and z, so it is also valid for x=a(n+2), y=a(n+1), z=a(n). - Alexander Samokrutov, Jul 02 2015
From Bernard Schott, Apr 09 2021 (Start):
Corresponding solutions m (of first comment) are in A011944.
Equivalently, numbers k such that k/3 and k+1 are both perfect squares. (End)

References

  • Guy Alarcon and Yves Duval, TS: Préparation au Concours Général, RMS, Collection Excellence, Paris, 2010, chapitre 13, Questions proposées aux élèves de Terminale S, Exercice 1, p. 220, p. 223.
  • D. A. Benaron, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[0,3]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+6: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[m] == 14 a[m - 1] - a[m - 2] + 6, a[1] == 0, a[2] == 3}, a, {m, 1, 17}] (* Michael De Vlieger, Jul 02 2015 *)
    CoefficientList[Series[-3 x^2*(1 + x)/(-1 + x)/(1 - 14 x + x^2), {x, 0, 17}], x] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    concat(0,3*Vec((1+x)/(1-x)/(1-14*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, May 14 2013
    

Formula

a(n) = 3*A098301(n-1).
a(m) = 14*a(m-1) - a(m-2) + 6.
G.f.: -3*x^2*(1+x)/(-1+x)/(1-14*x+x^2) = -3 + (1/2)/(-1+x) + (1/2)*(-97*x+7)/(1-14*x+x^2). - R. J. Mathar, Nov 20 2007
a(n) = (-2 + (7-4*sqrt(3))^n*(7+4*sqrt(3)) + (7-4*sqrt(3))*(7+4*sqrt(3))^n)/4. - Colin Barker, Mar 05 2016
From Bernard Schott, Apr 09 2021: (Start)
a(n) = 3 * A001353(n-1)^2.
a(n) = A055793(n+1) - 1 = A001075(n-1)^2 - 1. (End)
2*a(n) = A011943(n)-1. - R. J. Mathar, Mar 16 2023

Extensions

Corrected by Keith Lloyd, Mar 15 1996

A003753 Number of spanning trees in C_4 X P_n.

Original entry on oeis.org

4, 384, 31500, 2558976, 207746836, 16864848000, 1369080572444, 111141302329344, 9022397309950500, 732433860440996736, 59458627396289740076, 4826822683620921984000, 391839136544897998002484, 31809312044806091140235904, 2582264604005182130741437500
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Column k=4 of A173958. - Alois P. Heinz, Sep 20 2012

Programs

  • Maple
    a:= n-> (Matrix([[4,0,-4,-384,-31500,-2558976]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [90, -735, 1548, -735, 90, -1][i] else 0 fi)^(n-1))[1,1]; seq(a(n), n=1..20);  # Alois P. Heinz, Aug 01 2008
  • Mathematica
    a[n_] := (Sqrt[2]/3)*Sinh[n*ArcCosh[3]]*Sinh[n*ArcCosh[7]/2]^2 // Round; Array[a, 20] (* Jean-François Alcover, Jan 31 2016 *)

Formula

a(1) = 4,
a(2) = 384,
a(3) = 31500,
a(4) = 2558976,
a(5) = 207746836,
a(6) = 16864848000 and
a(n) = 90a(n-1) - 735a(n-2) + 1548a(n-3) - 735a(n-4) + 90a(n-5) - a(n-6).
G.f.: 4x(x^4+6x^3-30x^2+6x+1)/(x^6-90x^5+735x^4-1548x^3+735x^2-90x+1). [Paul Raff, Mar 06 2009]
a(n) = 4*A001109(n)*A098301(n). [R. K. Guy, seqfan list, Mar 28 2009] [From R. J. Mathar, Jun 03 2009]

Extensions

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

A221075 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 4. For other cases see A221073 (m = 2), A221074 (m = 3) and A221076 (m = 5).
If we denote the present sequence by [2; 12, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-2*{(2-sqrt(3))^(2*k+1)}^(4*n+3)]/[1 - 2*{(2-sqrt(3))^(2*k+1)}^(4*n+1)]. An example is given below

Examples

			Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
		

Crossrefs

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (2 + sqrt(3))^(2*n) + (2 - sqrt(3))^(2*n) - 2;
a(4*n - 1) = 1/2*{(2 + sqrt(3) )^(2*n + 1) + (2 - sqrt(3))^(2*n + 1)} - 2.
a(4*n - 3) = 12*A098301(n) = 12*A001353(n)^2 = 4*A007654(n);
a(4*n - 1) = 24*A076139(n) = 12*A217855 = 8*A076140(n) = 6*A123480(n) = 3*A045899(n).
O.g.f.: 2 + x^2/(1 - x^2) + 12*x*(1 + x^2)^2/(1 - 15*x^4 + 15*x^8 - x^12) = 2 + 12*x + x^2 + 24*x^3 + x^4 + 192*x^5 + ....
O.g.f.: (x^10-2*x^8-14*x^6+28*x^4-12*x^3+x^2-12*x-2) / ((x-1)*(x+1)*(x^4-4*x^2+1)*(x^4+4*x^2+1)). - Colin Barker, Jan 10 2014

A373026 a(n) is the least positive integer k such that 3*n^2 + 2*n - k is a square.

Original entry on oeis.org

1, 7, 8, 7, 4, 20, 17, 12, 5, 31, 24, 15, 4, 40, 29, 16, 1, 47, 32, 15, 69, 52, 33, 12, 76, 55, 32, 7, 81, 56, 29, 111, 84, 55, 24, 116, 85, 52, 17, 119, 84, 47, 8, 120, 81, 40, 160, 119, 76, 31, 161, 116, 69, 20, 160, 111, 60, 7, 157, 104, 49, 207, 152, 95, 36, 204, 145, 84, 21, 199, 136, 71
Offset: 1

Views

Author

Claude H. R. Dequatre, May 20 2024

Keywords

Comments

The scatterplot shows an interesting structure where terms are on descending hatches.
Terms on each hatch are quite well fitted by a polynomial of degree 2.
The parity of the term indices alternates from one hatch to the next and that of two consecutive terms alternates on the same hatch.
For terms on a given hatch, the differences of order 2 quickly become constant and equal to 2.
The fixed points begin 1, 16, 225, 3136, etc. They appear to be all squares and to come from A098301.

Examples

			a(1) = 1 because 3*1^2 + 2*1 = 5 and 5-1 is a square. So, 1 is a term.
a(2) = 7 because 3*2^2 + 2*2 = 16 and 16-1, 16-2, 16-3, 16-4, 16-5, 16-6 are not squares, but 16-7 is. So, 7 is a term.
		

Crossrefs

Programs

  • PARI
    a(n) = my(m=3*n^2+2*n-1); m+1-sqrtint(m)^2; \\ Michel Marcus, May 20 2024

A225786 Numbers k such that oblong(2*k) + oblong(k) is a square, where oblong(k) = A002378(k) = k*(k+1).

Original entry on oeis.org

0, 48, 15552, 5007792, 1612493568, 519217921200, 167186558132928, 53833552500881712, 17334236718725778432, 5581570389877199773488, 1797248331303739601284800, 578708381109414274413932208, 186342301468900092621684886272
Offset: 1

Views

Author

Alex Ratushnyak, May 16 2013

Keywords

Comments

Numbers k such that k*(5*k+3) is a perfect square. Apparently a(n) = 323*a(n-1) -323*a(n-2) +a(n-3). - R. J. Mathar, May 18 2013

Examples

			48*49 + 96*97 = 108^2, so 48 is in the sequence.
		

Crossrefs

Cf. A002378.
Cf. A098301 (numbers n such that oblong(2*n) - oblong(n) is a square).
Cf. A224419 (triangular(2*n) + triangular(n) is a square).
Cf. A220186 (triangular(2*n) - triangular(n) is a square).
Cf. A225785 (oblong(2*n) + oblong(n) is an oblong number).

Programs

  • C
    #include 
    #include 
    int main() {
      unsigned long long i, s, t;
      for (i = 0; i< (1ULL<<31); i++) {
        s = 2*i*(2*i+1) + i*(i+1);
        t = sqrt(s);
        if (s==t*t) printf("%llu, ", i);
      }
      return 0;
    }
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {0, 48, 15552}, 15] (* Bruno Berselli, May 18 2013 *)

Formula

G.f.: 48*x*(1+x)/((1-x)*(1-322*x+x^2)). - Bruno Berselli, May 18 2013
a(n) = (3/20)*((2-sqrt(5))^(4n-4)+(2+sqrt(5))^(4n-4)-2). - Bruno Berselli, May 18 2013

Extensions

a(6) from Ralf Stephan, May 17 2013
More terms from Bruno Berselli, May 18 2013
Showing 1-10 of 11 results. Next